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Protection Agency (US EPA).  The sponsors’ intent behind the project was to investigate and 
develop the idea of activity-based forecasting in an applied setting.  RDC, Inc. developed the 
Activity-Mobility Simulator, or AMOS, as a tool in this regard. 
 
The information contained in this report represents the views of RDC, Inc., and is not 
necessarily endorsed or recommended by the US DOT or US EPA. 
 
The project sponsors are interested, however, in articulating their support for continued 
investigation and assessment of activity-based forecasting techniques, and studying their 
potential for: (1) applications in transportation, and (2) any improvements to modeling practice. 
 To date, several metropolitan areas have demonstrated an interest in activity modeling, and 
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US EPA anticipate continued exploration of the role an activity-based approach can play in 
travel forecasting. 



Abstract: Activity Based Modeling System for Travel Demand Forecasting - Travel Model 
Improvement Program 
 
This study is probably the first attempt to develop and implement a full-fledged activity-based policy 
analysis tool for a metropolitan region and thereby examine whether activity-based approaches can be 
put to practical use. In particular, the study attempts to determine whether an operational activity-
based tool can be developed while utilizing available data, supplemented by a medium-scale survey 
that can be conducted with modest mounts of monetary and time resources.  
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Chapter 1:  Introduction 
 
1.1  Background 
 
Over the past couple of decades, the emphasis of transportation planning has shifted from the 
construction of new infrastructure to the effective management of travel demand.  This shift has been 
brought about by rising social, environmental, and economic concerns coupled with a realization that 
building one's way out of congestion is only a temporary solution to serving the increasingly complex 
patterns of travel demand that evolve over time.  Federal legislative acts such as the Clean Air Act 
Amendments, 1990 and the Intermodal Surface Transportation Efficiency Act, 1991, serve as key 
examples of this shift in transportation planning emphasis. 
 
In this regard, the decade of the 1980s saw an increased interest in the development and implementation 
of Travel Demand Management (TDM) strategies.  These strategies were aimed at effectively managing 
and distributing travel demand, both in the spatial and temporal dimensions.  For example, flexible work 
hours helped shift commute related peak-period trips to off-peak periods.  However, these strategies 
alone were not able to alleviate air quality, traffic congestion, noise, and safety problems associated with 
an ever-rising travel demand.  As a result, new strategies termed Transportation Control Measures 
(TCMs) have been embraced by the transportation planning community.  These measures are 
sophisticated and complex in nature, the exact impacts of which are unknown.  However, they are not 
only intended to effectively manage existing travel demand, but also to reduce travel demand through the 
suppression and selective elimination of trips.  Specifically, these measures tend to target peak-period 
commute trips and single-occupant vehicle (SOV) automobile trips, the two types of trips that 
contribute most to traffic congestion, fuel consumption, and emissions. 
 
As increasing numbers of urban areas began considering TCMs, it became apparent that traditional 
travel demand forecasting and planning methods, that are primarily derived from trip-based four-step 
procedures, are not able to address the complex questions raised by TCM implementation.  
Relationships among human travel behavior patterns and the attitudes, values, and constraints that 
determine these patterns are extremely complex in nature, and traditional forecasting methods do not 
explicitly model these relationships in a theoretically sound framework.   
 
An alternative approach which has the potential of offering effective and practical tools for TDM and 
TDM analysis is the activity-based approach. It was conceived in the travel behavior research arena in 
1970s.  Activity-based approaches explicitly recognize that travel demand is derived from the need to 
pursue activities that are dispersed in time and space.  Moreover, these approaches recognize the inter-
dependence among decisions for a series of trips made by an individual. They also recognize the 
interactions among various members of the household, that arise when household members allocate 
resources (such as household vehicles) to themselves, assign and share tasks, and jointly engage in 
activities. As such, it has been argued that activity-based approaches provide a theoretically and 
conceptually stronger framework within which travel demand modeling may be performed.   
 



Because activity-based approaches attempt to treat travel behavior in more rigorous and realistic 
manners, they tend to focus on details and demand more data. Furthermore, activity-based approaches 
have been more of a conceptual framework than specific methods that are accompanied with 
quantitative tools. In fact, applications of activity-based approaches to travel demand forecasting or 
quantitative policy analysis are practically non-existent. Activity-based approaches are by no means a 
“proven” concept.  
 
This study is probably the first attempt to develop and implement a full-fledged activity-based policy 
analysis tool for a metropolitan region and thereby examine whether activity-based approaches can be 
put to practical use. In particular, the study attempts to determine whether an operational activity-based 
tool can be developed while utilizing available data, supplemented by a medium-scale survey that can be 
conducted with modest mounts of monetary and time resources.  
 
Although results of this study indicate that activity-based approaches in fact lead to viable policy tools, 
the experimental nature of this study must be born in mind by the reader of this report. It is also noted 
that it is not the intent of the report to assert in any way that activity-based approaches are the only 
approaches to travel demand forecasting and policy analysis. To the contrary, it is believed that non 
single approach or model system is suited for all study objectives; activity-based approaches are 
believed to be effective in the types of analysis contained in this report, while other approaches, 
including the trip-based, four step model systems, will continue to be useful tools in other types of 
analysis.  
 
1.2  Study Objectives 
 
The Metropolitan Washington Council of Governments (MWCOG) as part of the Travel Model 
Improvement Program (TMIP), jointly sponsored by the U.S. Department of Transportation (DOT) 
and the U.S. Environmental Protection Agency (EPA) engaged RDC, Inc. to conduct an applied 
research study to determine the feasibility of  using activity-based methodologies to evaluate selected 
TDM policies. To perform this study using large-scale regional data, RDC, Inc., implemented a 
prototype of its Activity-Mobility Simulator (AMOS) which is a dynamic micro-simulator that replicates 
household responses to TDM measures. 
 
To implement and test AMOS in the Washington, D.C. metropolitan area, RDC’s approach consisted 
of the following activities: 
 
• The TDM measures to be tested within the activity-based framework of AMOS were selected in 

collaboration with MWCOG and Federal sponsors.  Of the more than 50 identified individual and 
combined TDM measures, six were selected for evaluation ranging from targeted premium charges 
for using personal vehicles (e.g., congestion pricing) to incentives for using alternatives to personal 
vehicles (e.g., improved pedestrian facilities).  Appendix A describes the initial set of TDM 
measures identified, and the process used in selecting the TDM measures addressed in the study. 

 



• In collaboration with MWCOG, RDC administered an elaborate survey of over 650 commuters in 
the metropolitan area designed to collect stated-preference responses to the selected TDM 
measures, revealed by daily time-use (activity) patterns both inside and outside the home, daily 
travel patterns, detailed commute trip attributes, and demographic and socio-economic data. This 
AMOS survey was the basis for estimating AMOS model parameters essential in evaluating TDM 
responses in the Washington, D.C. metropolitan area. 

 
• The AMOS prototype system was configured to maximize the use of existing pertinent data 

available within the MWCOG jurisdiction.  MWCOG’s data bases including the MWCOG 1994 
Household Travel Survey data (trip diary data) and relevant network data provided baseline travel 
patterns for the Washington, D.C. metropolitan area.   

 
• The AMOS prototype system was tested and used to assess the selected TCMs in the Washington, 

D.C. metropolitan area.  MWCOG provided the necessary sample data on nearly 100 households 
located in the study area to evaluate the commuter responsiveness to the selected TCMs. 

 
1.3  AMOS Features 
 
Over the past two years, the RDC, Inc., research team has developed and implemented the AMOS 
prototype intended to serve as a short-term transportation planning and policy analysis tool.  AMOS is 
an activity-based micro-simulator of daily human activity and travel patterns, which focuses on the 
adaptation and learning process that people exhibit when faced with a change in the transportation 
environment.  AMOS simulates a new activity-travel pattern that a person is likely to adopt in response 
to a TDM measure.  This is accomplished through the implementation of several AMOS modules, 
namely: 
 
• Baseline Activity-Travel Analyzer.  The baseline activity-travel analyzer reads individual trip 

records, compares them with the network data for logical consistency and missing information, and 
then generates a coherent baseline activity-travel pattern for each individual.  All consistent baseline 
activity-travel patterns are used by the remaining AMOS system components. 

 
• TDM Response Option Generator.  This module creates the “basic” response of an individual to 

a TDM strategy.  It is a neural network model that is trained by using revealed-preference and 
stated-preference data obtained from AMOS survey.  The baseline travel pattern  from the Baseline 
Activity-Travel Analyzer, demographic and socio-economic attributes, and TDM characteristics 
under investigation serve as inputs to this module. The outputs of this module are the behavioral 
responses.  The TDM measures are characterized by their cost changes, travel time changes, mode 
attribute changes, and imposition or relaxation of constraints.   

 
• Activity-Travel Pattern Modifier:  This module constitutes the activity-trip re-sequencing and re-

scheduling algorithm.  It  provides one or more alternative activity-travel patterns based on the 
response provided by the TDM Response Option Generator. The inputs of this module include the 
baseline activity-travel patterns, network data, land-use data, socio-economic and demographic 



characteristics, and the response options from the TDM Response Option Generator.  The output 
of this module is a modified activity-travel pattern.  The feasibility of a modified activity-travel 
pattern is checked for consistency and logic against a set of rule-based constraints.   

 
• Evaluation Module and Acceptance Routines: This component evaluates the utility associated 

with a modified activity-travel pattern generated by the Activity-Travel Pattern Modifier.  
Operationally, its built-in acceptance routines assess whether a modified activity-travel pattern will 
be accepted or rejected on the basis of a human adaptation and learning model incorporating a set 
of search termination rules.  

 
• Statistics Accumulator: This module reads all feasible accepted activity-travel patterns provided 

by the Evaluation Module and generates descriptive and frequency statistics on a daily basis. These 
descriptive and frequency statistics include vehicle miles traveled, number of trips by mode and by 
time of day, number of stops by purpose, trip chains, activity duration by purpose, travel times by 
purpose, vehicle occupancy, cold and hot starts, etc. In conjunction with baseline travel patterns, it 
can provide measures of change in travel characteristics.   

 
As such, AMOS consists of a series of inter-related components that collectively serve as a 
comprehensive transportation planning and policy analysis tool.  AMOS abandons some of the 
questionable assumptions in the trip-based four-step procedures, and embraces several new concepts 
that are theoretically sound and lead to more robust TCM impact predictions. 
 
1.4  Study Conclusions  
 
This project represents the first implementation of a full-fledged activity-based model system for 
transportation planning and policy analysis.  Despite the theoretical arguments that warrant their practical 
applications, activity-based approaches remained within the domain of academia for nearly two 
decades.  The development of AMOS and its implementation in the Washington, D.C., metropolitan 
area, therefore, represents a significant step forward in transportation planning and policy analysis.  The 
development is especially significant considering the importance of travel demand management in the 
current planning contexts set forth by the Clean Air Act Amendments and Intermodal Surface 
Transportation Efficiency Act. 
 
In the project, a micro-simulation model system which is capable of producing travel demand forecasts 
based on principles of activity-based analysis has been constructed and implemented in the Washington, 
D.C., metropolitan area, and applied to a selection of TDM measures using a sample of trip diaries from 
the 1994 MWCOG survey.  The achievements of this effort can be summarized as follows. 
 
• The project has demonstrated that the activity-based model system can be implemented in a 

metropolitan area using data available from a typical metropolitan planning organization (MPO), 
such as trip diary data, network travel time data, and land-use inventory data (the only additional 
data needed for AMOS implementation are stated-preference survey results from the area which 



are used to customize a component of AMOS to the area residents’ responsiveness to TDM 
measures). 

 
• It has been shown that travel demand forecasts can be developed while treating the daily travel 

pattern in its entirety, without breaking it into individual trips and thereby compromising the 
interdependencies and continuities that exist across the series of trips made by a traveler. 

 
• This also implies that practical capabilities have been developed to assess TDM impacts more 

cohesively while accounting for secondary and tertiary changes in a traveler’s daily travel pattern 
that are brought about as results of a primary change in response to a TDM measure (for example, 
if a SOV (single-occupant vehicle) commuter, who stops on the way to and from work to drop off 
and pick up a child at day-care, switches to carpooling in response to congestion pricing (primary 
change), then new, two round-trip SOV trips may be made between the home and day-care to 
drop off and pick up the child). 

 
• The AMOS survey designed in this project has shown that the stated-preference questions 

developed in this project have produced credible results (except for the case of a particular synergy 
combination of two TDM measures), and that the survey can be applied to obtain information vital 
for the assessment of potential effectiveness of alternative TDM measures. 

 
• The AMOS survey data produced rich statistical results that have revealed the characteristics of 

responses commuters would show when faced with TDM measures; for example, female 
commuters who make stops on the way to or from work tend not to change their travel in response 
to a TDM measure. 

 
• The numerical examples using the sample of MWCOG trip diary data have shown the AMOS 

prototype is capable of producing aggregate statistics of travel demand at levels that are comparable 
to the conventional trip-based model systems (except that the current version of AMOS operates 
with static zone-to-zone travel time matrices rather than internally conducting network assignment). 

 
It is worthy to note that the development of the AMOS prototype incorporates a number of theoretical 
concepts, such as “adaptation behavior” and “time-space constraints,” into a practical model system 
which fully utilizes the data that are maintained by a typical MPO. 
 
1.5  Outline of Report 
 
This report consists of eight more sections. Sections 2 and 3 discuss the trip-based four step process, 
and the features that can be either augmented or replaced by an activity-based travel demand 
methodology such as AMOS. Sections 4 and 5 discuss the basic concepts and analytical techniques 
which are the foundation of AMOS, and its applicability in evaluating TDM policies. Section 6 defines 
the TDM policies selected for evaluation in the Washington, D.C. metropolitan area, implementation of 
AMOS with the MWCOG network data, and the application of AMOS to MWCOG household 



records. Sections 7 and 8 discuss the results of the TDM policy analysis, and implications for future 
activity-based travel demand modeling. 
 
Go to Table of Contents 
 
Chapter 2:  A Critical Review of the Trip-Based, Four Step Procedure of Urban 
Passenger Demand 
 
Practically all tools currently available for passenger travel demand forecasting and policy  analysis are 
based on the four-step procedure.  The procedure was developed in the 1950s and 1960s during the 
post-war expansion period, when: 
 
• Urban population was rapidly growing,  
• Motorization was progressing, and  
• Suburban sprawling was starting.  
 
The emphasis in transportation planning at that time was infrastructure development.  The  issue at hand 
was where to build a new freeway and how many lanes were needed.  Because of such straightforward 
planning contexts, coarse forecasting procedures sufficed at that time.  In fact, it is not difficult to see 
that when the population of a metropolitan area doubles, the  total number of trips will approximately 
double and increases in trips can be relatively easily forecast once one can determine in which parts of 
the metropolitan area increases in  residential and work populations will take place. 
 
Planning emphasis has changed substantially since then.  In the 1970s Transportation  Systems 
Management (TSM) was promoted, while in the 1980s Travel Demand  Management (TDM) was 
proposed.  Currently the transportation planning community  embraces a more inclusive concept of 
Transportation Control Measures (TCM). The  measures being considered are extensive and 
increasingly more sophisticated and are fine-tuned to target specific traveler segments.  The trip-based 
four-step procedure, developed to serve the planning needs of decades ago, is not best suited to 
address these new transportation measures.     
 
2.1  Advantages 
 
The simplification incorporated into the four-step procedure made urban passenger travel  demand 
forecasting practicable using standard survey methods, census and other existing data, and 
computational capabilities that had been available.  The simplifying assumptions adopted in the 
procedure facilitated quantitative analysis of travel demand, which is a result of complex (to analyze) 
travel behavior.  In particular, the development of a standard analysis package, Urban Transportation 
Planning System (UTPS), led to the development of PC-based transportation planning  packages, 
which in turn have made the forecasting procedure affordable to practically any MPO.     
 
2.2  Internal Inconsistencies 
 



The procedure, however, contains several well acknowledged internal inconsistencies.  For example, 
the area-wide totals of zonal trip productions and  attractions normally do not coincide with each other, 
requiring some adjustment; zone-to-zone travel times used as input to trip distribution and modal split 
are not necessarily consistent with travel times that are derived from the network assignment; and trips 
are assigned to different time periods of the day (e.g., peak vs. off-peak) prior to network assignment, 
usually using heuristic procedures.  For additional issues involved in the application of the four-step 
procedure, see Table 2.1. 
 
 Table 2.1:  Sample of Recognized Issues Involved in the Application 
 of the Four-Step Procedure  
 
• Agreement between trip generation and trip production   
• Estimation of external-to-internal and internal-to-external traffic   
• Estimation of directional traffic flows by time of day (peak vs. off-peak), estimation of peak hour 

flows   
• Conversion of person trips to vehicle trips (estimation of vehicle occupancy by time of day, by 

purpose)  
• Estimation of intra-zonal travel times   
• Assignment of intra-zonal trips to the network   
• Estimation of access walk time to public transit, access time to freeways or major arterials 
• Special trip generators   
• Creation of new zones, grouping of existing zones   
• Determination of speed-volume relationship   
• Temporal stability in model parameters (e.g., K-factors and friction factors; value of time) 
• Determination of inter-zonal travel times in pre-modal-split trip distribution   
• Consistency in the travel time variables across trip distribution, modal split and network 

assignment (can be resolved by implementing feedback loops) 

 
2.3  Data Inefficiency   
 
When disaggregate choice models were proposed in the 1970s, it was argued that the aggregate four-
step procedure was not data-efficient.  This is mainly because the procedure was developed when 
available computational capabilities were very limited and costly and statistical theory for model 
estimation was not well advanced. As a result, model calibration procedures adopted inefficient data use 
(especially the aggregation of  household survey results into zonal averages) led to an inefficient 
parameter estimation (e.g., trip distribution models).       
 
2.4  Lack of Behavioral Foundation 
 
More problematic are the implicit assumptions in the four-step model components which lack behavioral 
foundation.  For example, consider trip generation models.  Implicit in typical linear-regression or cross-
classification models of trip generation is the assumption that the number of trips generated by a 
household is a function of the number of its members and the number of vehicles available.  This 



assumption does not reflect the well known behavioral fact that employment status affects travel 
behavior.  Therefore, the number of workers in the household affects trip generation.       
 
2.5  Resulting Problems as a Policy Tool   
 
Suppose parking pricing is implemented in the downtown area.  This event may cause some travelers to 
choose suburban destinations.  This result,  however, is not accounted for by the four-step procedure 
because the total number of trips  attracted to the downtown area is determined in the trip generation 
phase, which typically does not incorporate parking cost.  The procedure would indicate no change in 
the number of trips attracted to the downtown area before and after the implementation of parking  
pricing.  Likewise, effects of congestion on travel demand cannot be fully accounted for by the four-step 
procedure because trip generation models are typically insensitive to travel time (this problem cannot be 
alleviated by incorporating feedback loops).     
 
Trip-Based:  The four-step procedure treats each trip as an independent entity for analysis. This 
assumption is central to the four-step procedure in the sense that its model structure hinges on it.  This 
dependence, however, leads to a number of serious limitations, especially when its application to TCMs 
is considered.  The problems stem from the fact that trips made by an individual are linked to each other 
and the decisions underlying the respective trips are all inter-related.     
 
Example of Travel Mode Choice for Multi-Stop Trip Chains:  Consider a home-based trip chain  
(a series of linked trips that starts and ends at the home base) that contains two or more  stops.  The 
four-step procedure looks at each trip at a time and determines the best mode for  it.  Let h be the 
home base and i and j be the destination zones visited in a trip chain.  There are three trips, (h, i), (i, j), 
and (j, h).  When a trip-based, post-distribution mode choice model is applied while comparing the 
alternative modes available between each pair of zones,  it is entirely possible that bus is assigned for (h, 
i), drive alone for (i, j), and carpool for (j, h).  This contains two major problems.  First, the result 
violates the modal continuity condition.  Mode choice for a trip with non-home origin is regulated by the 
mode selected for the first home-based trip; if one leaves home by bus, it is normally not possible to 
choose the drive-alone mode in subsequent trips.  On the other hand, once one leaves home by driving  
alone, all subsequent trips tend to be made by driving alone.  Second, the result ignores the behavioral 
fact that one will most likely plan ahead and choose a mode while considering the entire trip chain,  not 
just each individual trip.  One may decide to take the auto even when good bus service is  available 
between h and i and between j and h, but because no bus service is available  between i and j.     
 
Treating each individual trip in isolation becomes a problem on many occasions.  For example, 
commuters who make trips on the way to or from work (e.g., dropping off/picking up children) are less 
likely to switch from the drive-alone mode when TDM measures such as congestion pricing are 
implemented.  What is termed "activity re-sequencing"  in this study is another example.  Suppose a 
drive-alone commuter stops by at a grocery store on the way home from work.  Faced with congestion 
pricing, this commuter may choose to take the bus to commute, and go shopping by auto at a grocery 
store near home after returning home by bus.  The trip-based four-step procedure is not capable of 



addressing such secondary and tertiary changes brought about by the primary commute mode change.   
  
 
Over-Predicted Mode Shift:  Because its trip-based structure does not recognize the mode continuity 
condition, it is logically expected that the procedure over-predicts mode changes.  The problem is 
multiplied by the fact that the modal split phase tends to be most sensitive to changes in the travel 
environment because it often incorporates disaggregate choice models.  As a result, the four-step 
procedure may grossly over-estimate mode shift, when in fact travel mode may be the last thing 
travelers wish to change.     
 
No Time Dimension:  The fact that the four-step procedure does not incorporate the time-of-day 
dimension is curious when congestion -- which has been the single most important concern of 
transportation planning -- occurs with the concentration of demand in the same area at the same time.  
The absence of the time dimension is behind some of the recognized issues listed in Table 2.1.  In 
addition, it implies that departure time choice  cannot be incorporated into the forecasting procedure 
(without introducing ad hoc assumptions).  This in turn implies that the four-step procedure cannot be 
effective in the analysis of peak spreading in general and congestion pricing in particular.     
 
The time dimension is crucial in air quality analysis.  Because air quality is a function of complex 
meteorological relationships, it is important to be able to predict when within the day pollutants are 
emitted, not just the total amount of emissions.  Determining the split between hot and cold starts in any 
consistent manner would also require the introduction of  the time dimension into the analytical scope.  
Furthermore, recent interest in Intelligent Transportation Systems (ITS) technologies calls for the ability 
to predict traffic dynamics on  the network.     
 
Vehicle Ownership:  An area where very little effort has been directed at the Metropolitan Planning 
Organization (MPO) level is vehicle ownership modeling.  This may not be a problem if the number of 
vehicles available to the household is the only concern (which in fact was the case at the time when 
motorization was progressing at fast rates).  Recent concerns with air quality and fuel consumption, 
however, imply that increased importance is assigned to which types of vehicles are chosen by 
households and how much and where each type of vehicle tends to be used.  This calls for the 
implementation of vehicle type choice models, and development of vehicle allocation models that predict 
which vehicle will be used for which trip.     
 
Representing Accessibility and Land-Use:  The state-of-the-art has not advanced enough to 
incorporate into the forecasting process:     
 
• Impact of new highway and transit facilities on land-use,   
• Impact of travel patterns (materialized demand) on land-use,   
• Impact of accessibility (congestion) on trip generation and attraction, and   
• Impact of multiple-activity land-use development (e.g., shopping malls) on travel demand. 
 
2.6  Summary 



 
In summary, the following can be listed as the limitations of the four-step procedure in the  current policy 
contexts:  
 
• Trip-based, sequential structure,   
• Lack of the time-of-day dimension,   
• Limited sets of explanatory variables,   
• Limited behavioral responses,   
• Consequently unresponsive to most TDM measures,   
• Trip generation unresponsive to congestion and pricing,   
• Consequently the trip distribution phase is not fully responsive to system change,   
• Inability to address vehicle fleet mix evolution, and   
• Totally exogenous land-use, economic and socio-demographic input.     
 
While some of the problems discussed in this section may be resolved for certain situations  by 
introducing new model elements, the problems stemming from its atemporal, trip-based structure are 
difficult targets for improvement within the framework of the four-step  procedure.    
Before closing this section, it is emphasized that no single model system is suited for all study objectives. 
 The trip-based, four-step  procedure continues to be an effective demand forecasting procedure for 
certain types of  problems.  Yet, current policy contexts call for alternative models.  The array of 
transportation planning tools available to policy makers needs to be expanded. 
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Chapter 3: Why the Activity-Based Approach? 
 
As noted earlier, the activity-based approach explicitly recognizes the fact that the demand  for activities 
produces the demand for travel.  In other words the need or desire to engage in an activity at a different 
location generates a trip.  Then once we understand how activities are engaged in the course of a day or 
a week, a rigorous understanding of travel demand will follow.     
 
The activity-based approach thus aims at the prediction of travel demand based on a  thorough 
understanding of the decision process underlying travel behavior. In this sense the activity-based 
approach is entirely different from the approach taken for the development of  the four-step procedure 
where statistical associations, rather than behavioral relationships, drove model development.  Another 
important distinction is the following recognition: as the activities engaged in a day are linked to each 
other, trips made to pursue them are also linked to each other; they cannot be analyzed separately one 
by one.     
 
Although the activity-based approach was conceived in the 1970s by a group of researchers at Oxford 
University, it largely remained within the domain of academic research.  The  practitioners' community 
has paid little attention to it until very recently.  Kitamura (1988a) attributed this inattention to the fact 



that the activity-based approach is not suited for the evaluation of capital-intensive large-scale projects, 
but better suited for refined, often small-scale transportation policy measures, and that small-scale 
projects can hardly afford elaborate analysis.  This is no longer the case, at least in the United States.  
The importance of refined TDMs are well recognized and efforts are being made to promote their 
implementation and to assess their potential effectiveness.    
Aside from this rather drastic change in transportation planning contexts, several important advances 
have taken place:  
 
• Accumulation of activity-based research results,   
• Advances in survey methods (e.g., stated-preference (SP) and time-use survey methodologies) and 

statistical estimation methods, and   
• Advances in computational capabilities and supporting software (database software, GIS,  etc.).     
 
All these changes have created an environment where a model of travel behavior can be  developed 
while adhering to the principles of the activity-based approach.  More specifically, these changes have 
made activity-based micro-simulation of travel behavior a practical tool for transportation planning and 
policy  analysis.  
 
Activity-based studies of travel behavior have led to the following emphases:  
 
• Constraints which govern activity engagement and travel behavior (e.g., store opening  hours, 

vehicle availability),   
• Behavioral changes, or behavioral dynamics which are exhibited when an individual is faced  with 

changes in the travel environment (e.g., switching between driving alone and carpooling  to work),    
• Adaptation as a special case of behavioral dynamics (e.g., a new baby prompting the  acquisition of 

a large-screen TV set by the parents who gave up evening outings),   
• The time dimension which is implicit in the emphasis of behavioral changes as changes taking place 

over time,   
• Day-to-day variability in behavior and demand, as another special aspect of behavioral dynamics 

(e.g., part-time carpooling),   
• Scheduling of activities and trips over a span of time; when to engage in what type of  activities, and 

in what sequence,   
• Trip chaining: combining stops into a trip chain,   
• In-home/out-of-home activity substitution (e.g., going out for a movie vs. watching TV at home), 

which is directly related to trip generation,   
• Inter-personal linkages, which may take on the form of task and resource assignment (e.g., vehicle 

allocation within a household) and resource sharing (e.g., carpooling by family  members), joint 
activity engagement (a Sunday family outing), and activity generation (e.g., a  child's ballet lesson 
generating the parent's activity of chauffeuring the child to ballet school),  and   

• Household life-cycle stage, which is strongly associated with the level of inter-personal interaction.  
 
Studies with these emphases have individually and collectively contributed to the revelation of the 
mechanism of trip making.  



 
The activity-based approach implies an expansion of the analytical scope because its subject is not 
limited to the trip.  This naturally leads to increased levels of difficulty in the analysis because activity 
engagement is a complex behavior.  Conventional trip diary data do not offer sufficient information on 
activities.  Partly because of such data limitations, little effort has been made to explain the behavior over 
a span of time (say, a day or a week). Difficulties are compounded because modeling time allocation 
into activity categories by itself is not sufficient; activity engagement episodes need to be modeled for 
travel demand analysis.  In other words, the link between activity engagement and trip making is yet to 
be established.  
 
Despite these difficulties, the activity-based approach is more than worthy to pursue because it offers 
advantages that outweigh the cost of increased levels of analytical complexity.  In fact  some of the 
problems raised above have been resolved in this AMOS implementation project  where micro-
simulation is deployed as a tool for demand analysis.     
 
The advantages of the activity-based micro-simulation approach adopted in this project  include: 
 
• Time Of Day: predicts travel behavior along a continuous time axis;   
• Not Trip-Based: treats a daily activity-travel pattern as a whole, thus avoiding the shortcomings of 

conventional trip-based methods;   
• Realism: incorporates various constraints governing trip making, facilitating realistic  prediction and 

scenario analyses;   
• TDM Evaluation: is capable of realistically assessing the impact of TDMs on the entire  daily 

travel demand;   
• Versatile: can address various policy scenarios using special-purpose SP surveys;   
• Flexible: can be modified for specific study objectives, e.g., to evaluate the effects of day-care 

facilities at work, extended transit service hours, or transit lines;   
• Induced Demand: the activity-based approach is a key to address the issue of induced or 

suppressed demand; and   
• Accuracy Control: using synthetic household samples, can produce results with desired levels of 

spatial and temporal resolutions.     
• Comprehensive Evaluation Tool: activity-based approach simulates the entire daily activities and 

travel.  Therefore, the effect of a transportation policy on the entire daily activity, not just commute 
trips, can be evaluated, leading to better benefit measures.     

 
The activity-based micro-simulation approach resolves much of the problems in the trip-based, four-
step procedure.  This will be illustrated using more specific examples in later sections of this report. 
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Chapter 4:  Overview of AMOS 
 



AMOS is an activity-based micro-simulator of daily human activity and travel patterns.  In a nutshell, 
AMOS takes an observed ("baseline") daily travel pattern of an individual; generates an adaptation 
option (e.g., change commute travel mode) that may be adopted by the individual when faced with the 
TCM under consideration; adjusts the baseline pattern (e.g., re-sequences activities, selects new 
destinations) to produce a modified activity-travel pattern; evaluates the utility of the modified pattern; 
based on a satisficing rule, accepts one of the modified patterns so far generated and terminates the 
search, or continues to search for alternatives. 
 
AMOS consists of a series of inter-related components that collectively serve as a comprehensive 
transportation policy analysis tool.  AMOS departs from the restrictive assumptions in the trip-based 
four-step procedures and adopts new paradigms that are theoretically sound and practical. 
 
4.1  Paradigm Shifts 
 
AMOS is fundamentally different from conventional forecasting model systems in several crucial 
aspects. In addition, AMOS represents the following paradigm shifts: 
 
• from trip-based analysis to activity-based analysis, 
• from static, cross-sectional analysis to dynamic, longitudinal analysis, 
• from deterministic demand equation to stochastic micro-simulation, 
• from optimization to satisficing, and 
• from capacity- and level-of-service-based capital project evaluation to time-use-based assessment 

of TDM effectiveness as well as capital project evaluation. 
 
The activity-based approach as described in detail in Section 3 is the central principle of the AMOS 
development effort.  Because of this, the entire daily itinerary, not each individual trip, is the focus of the 
analysis.  Derived from this focus is the rule-based heuristics that are embedded in the AMOS 
algorithms (see Section 5). 
 
Another critical paradigm shift is from static approach to dynamic approach for both model 
development and data collection ("static" analysis assumes that the behavioral relation is atemporal and 
the time dimension is irrelevant, while "dynamic" analysis focuses on behavioral changes over time). This 
shift is based on critical appraisals of the following well-accepted and well-practiced, yet not validated 
assumption:  Future behavior can be predicted based on the extrapolation of cross-sectional 
observations of individuals of different characteristics and behaviors, and that future behavior can be 
predicted without observing behavioral changes for each individual ("cross-sectional" observations or 
data refer to a set of observations obtained at one point in time from the respective behavioral units such 
as individuals or households, while "longitudinal" observations comprise repeated observations taken 
from the same behavioral units). 
 
Application of a model estimated on a cross-sectional data set taken at one point in time represents the 
"longitudinal extrapolation of cross-sectional variations" (Kitamura, 1990).   In such extrapolations 
cross-sectional elasticities observed across different individuals are applied as if they represent 



longitudinal elasticities that capture the change in behavior that follows a change in a contributing factor 
within each behavioral unit.  Unfortunately this approach is valid only under very restrictive conditions 
(see Goodwin et al., 1990).  For example, it requires that behavioral response is immediate without any 
time lag; that the magnitude of response is invariant regardless of the direction of change; and that 
behavioral response is independent of the past history of behavior.   
 
The assumption of the equivalence between cross-sectional and longitudinal elasticities has yet to be 
validated, while empirical evidence is accumulating that these assumptions do not hold (e.g., Kitamura & 
van der Hoorn, 1987; Goodwin, 1992).  This critical appraisal of cross-sectional analysis and 
forecasting of travel demand, combined with the emphasis of activity-based analysis on adaptation 
behavior, leads to dynamic analysis and modeling being emphasized throughout the construction of 
AMOS. 
 
Another important paradigm shift is the transition from the extrapolation based on deterministic demand 
equations to forecasting using stochastic micro-simulation. The motivating factor for the adoption of 
micro-simulation as a central driving force of AMOS is the fact that activity-travel behavior is a process 
that is governed by layers of constraints and influenced by numerous factors many of which are 
stochastic.  Arranging activities and trips into a daily itinerary itself is a complex operations research 
problem to which individuals have devised routines to find a (not necessarily optimum) solution.  Despite 
the simplicity of the activity-based approach that arises from its focus on human behavior without 
introducing artificial constructs, the behavior under investigation is indeed complex to analyze (for 
example, it has been proven that no analytical solutions exist for even simpler "traveling salesman 
problems" where an optimum sequence is sought to visit a pre-determined set of locations, a problem 
by far simpler than an individual's daily activity-travel decision).  Given the complexity and stochastic 
elements inherent in transportation system performance, constraints and motivating factors for activity-
travel behavior, and in human decision and behavior themselves, micro-simulation is the only feasible 
approach that need not embrace over-simplifying assumptions that, unfortunately, reduce the complexity 
and hence, realism of response and adaptation patterns that are being modeled. 
 
It has been customary to view travel behavior as the outcome of an optimization process in which the 
most superior travel option is identified and pursued by the individual (e.g., Recker, 1995; Recker et al., 
1986a, 1986b).  Practically all discrete choice models of travel behavior are based on this premise.  
Although elegant, the assumption of optimization is unrealistic when applied to everyday behavior of 
activity engagement and travel by individuals and households.  For example, the individual must possess 
complete information to be able to locate an optimum solution, and must be capable of sorting out an 
enormous number of possible options and discriminating among them.  It also assumes that the individual 
can perfectly detect minute differences among options.  These assumptions presume super-human 
abilities in ordinary travelers, and therefore are unrealistic as behavioral propositions.  On the contrary, 
the information individuals have is partial and incomplete; the number of items individuals can 
incorporate into their cognitive system is limited; their perceptive ability to discriminate between stimuli is 
limited; the outcome of a decision is usually highly uncertain; and individuals' decisions may not be 
internally coherent and consistently rational.  Moreover, there is evidence that behavioral inertia is 



prevalent, and that individuals tend to resist behavioral changes.  Our travel behavior is most probably 
not in the state of equilibrium which the paradigm of optimization assumes (Goodwin et al., 1987). 
 
AMOS, on the other hand, emphasizes trial-and-error and learning activities along with the satisficing 
principle which is viewed to govern the adaptation process.  The optimization principle may be applied 
to observed behavior as an operational (as opposed to behavioral) axiom with the premise that a central 
tendency exists and embodies the optimization principle, and that deviations of individual observations 
from that central tendency can be accounted for by error components.  This premise, however, is valid 
only when deviations from the central tendency are purely random.  The development of AMOS, on the 
other hand, reflects the intention to adopt the most realistic modeling framework that best replicates 
activity-travel behavior.  Instead of assuming the presence of cross-sectional equilibrium based on 
optimization, the behavioral process of adaptation is explicitly modeled in AMOS. 
 
Finally, evaluation of transportation projects has traditionally been based on capacity and level of 
service.  Given the cost, an alternative that delivers the most capacity and highest level of service is 
considered as the best alternative; or given a minimum capacity or level of service, the least cost 
alternative is considered as best.  This is a trip-based approach to project evaluation.  An activity-based 
project evaluation and policy analysis is adopted in AMOS.  Since activity engagement is synonymous 
as time use, time-use-based policy analysis and project evaluation are proposed here.  In short, the new 
approach aims at evaluating the impact of a transportation policy measure or capital project on urban 
residents’ daily life as represented by time-use patterns, and attempts to derive evaluation measures 
based on time-use utility.  More discussion can be found in Section 5.4 of this report. 
 
4.2  Structure of the Model System 
 
Figure 4.1 is a flowchart showing how the five primary modules relate to one another within the overall 
AMOS framework. 
 
The first module is the Baseline Activity-Travel Analyzer.  It reads trip records, checks them against 
transportation network data, and assembles coherent baseline activity-travel patterns.  The next module, 
TDM Response Option Generator, reads these baseline patterns and provides a basic behavioral 
response that an individual may exhibit when subjected to a TDM strategy.  The third module, Activity-
Travel Pattern Modifier, uses the basic response to determine secondary and tertiary changes that may 
occur in the baseline travel itinerary as a result of the TDM policy.  It offers multiple alternative activity-
travel patterns that may be considered by an individual.  The Evaluation and Search Termination module 
evaluates these alternative patterns and determines the one that is most likely to be adopted by the 
individual.  Finally, the Statistics Accumulator computes individual and aggregate travel indicators for the 
adopted modified activity-travel patterns.  Section 5 provides detailed discussions on each of the 
modules comprising AMOS. 
 



 



Table 4.1 describes the output information provided by each AMOS module.  Most of these output 
variables also constitute input variables of other AMOS modules as shown in Figure 4.1. 
 
 Table 4.1:  Output Variables for AMOS Modules  

AMOS Module 
 

Output Variable  
Baseline Activity-Travel Analyzer 

 
Coherent and logically consistent baseline travel pattern and 
activity engagement profile  

TDM Response Option Generator 
 
Basic behavioral response of individual to TDM strategy 
under investigation  

Activity-Travel Pattern Modifier 
 
Alternative activity-travel patterns that may be considered 
after introduction of TDM strategy  

Evaluation and Search Termination 
 
Alternative activity-travel pattern that is most   

Module 
 
likely to be adopted by individual after introduction of TDM 
strategy  

Statistics Accumulator 
 
Individual and aggregate travel indicators describing 
characteristics of adopted alternative activity-travel pattern 

 
4.3  Data Needs  
 
The AMOS prototype has been developed to fully utilize data bases that are available from typical 
MPOs while minimizing the need for non-existent data.  Despite the paradigm shifts discussed in Section 
4.1, in particular the focus on activities rather than trips, shift in data requirements has been kept to a 
minimum. 
 
Implementing AMOS in a region requires the following data that are typically available from the area 
MPO: 
 
• traffic analysis zone (TAZ) system, 
• TAZ-to-TAZ network travel time by mode and distance, 
• land-use inventory by TAZ, 
• existing mode choice models and trip distribution models, and 
• standard trip diary data of household members with basic trip information such as origin, destination, 

trip purpose, departure and arrival times, and mode. 
 
Based on these regional data, the AMOS prototype develops regional forecasts using a pivot method 
(see Section 6.5). 
 
In the near future more rigorous regional forecasting will be made by generating synthetic households for 
micro-simulation.  For this, will be needed.  It is believed that these distributions can be obtained from 
publicly available census tape. 
 



• the distributions of household size, vehicle ownership and income by TAZ, and 
• the joint distribution of household size, vehicle ownership and income for the region, 
 
In addition, if AMOS is being implemented as a policy tool for TDM evaluation, it is required that those 
TDM strategies that are considered for potential implementation be identified and their characteristics be 
determined, namely, 
 
• the types and characteristics of TDM strategies under consideration (policy input). 
 
Finally it is desirable that study area residents’ responsiveness to the TDM strategies under 
consideration be accurately reflected when implementing AMOS to the region.  This calls for 
 
• individuals’ potential responses to TDM strategies, along with their demographic, socio-economic, 

and travel characteristics. 
 
The last requirement calls for a survey which involves stated-preference questions to potential TDM 
strategies.  This survey requires only a moderate size of sample (about 500).  The results of this survey 
will be used to customize the response option generator (see Section 5.2) and other AMOS 
components to the region.  The survey conducted in the Washington, D.C. area is described in Section 
6. 
 
In sum, most AMOS data requirements can be satisfied with data that are maintained by, and available 
from, most MPOs.  The only exception is TDM response data for which a special survey is required.  
 
Since this project represents the first implementation of an AMOS prototype, the survey described in 
Section 6 has been designed to collect information for prototype development.  In the future as AMOS 
becomes more complete and refined, information required from the survey is expected to decrease.  
Exactly how much information needs to be collected in a survey for each installation, and whether a 
survey needs to be repeated in every installation, need to be determined in the future. 
 
4.4  Areas of Application  
 
AMOS is being developed as an extremely versatile transportation policy analysis tool.  It may be 
considered a comprehensive activity-based travel demand forecasting system that is truly behavioral in 
nature.  As such, AMOS is able to serve a host of applications including: 
 
• Travel Demand Forecasting:  First and foremost, AMOS is the first operational activity-based 

travel demand forecasting system.  AMOS is a dynamic micro-simulator of individual activity-travel 
patterns and therefore can be used to predict travel demand under various future scenarios.   

• Policy Analysis:  AMOS can be used as a comprehensive policy analysis tool.  For example, 
AMOS can predict changes in travel patterns that may result from the introduction of a wide variety 
of TDM measures.   



• Activity Engagement and Time-Use Modeling:  The activity-based approach underlying 
AMOS allows the explicit modeling of individual activity engagement and time-use.  The model 
system can in turn be used in several research areas including transportation, psychology, sociology, 
and health sciences. 

• Air Quality Analysis:  The statistics accumulator provides information on cold and hot starts, fuel 
consumption, and vehicle miles traveled for activity-travel patterns that may be adopted as a result 
of a TDM strategy.  These statistics can be used in conjunction with air quality and energy models 
to perform emissions analyses and fuel consumption analyses.   

 
AMOS is capable of addressing many of the issues and questions raised by ISTEA, of 1991 and 
CAAA, of 1990 that have set a new stage for transportation planning and policy analysis.  On the other 
hand, traditional four-step procedures are not able to address these issues.  In the next few sections of 
this report, the components of AMOS are described in detail and its implementation in the Washington, 
D.C. metropolitan area is discussed. 
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Chapter 5:  AMOS System Components 
 
AMOS is a system of integrated computer models designed to predict traveler behavior through a 
micro-simulation of transportation activities and decisions. AMOS will provide, in response to a TDM 
measure, a modified activity and travel pattern that satisfies a person given his or her socio-economic 
and demographic characteristics, and baseline travel pattern.  AMOS consists of five main computer 
models (or components) that collectively and systematically accomplish this objective.  The five main 
components that comprise the AMOS system, shown in Figure 5.1, are described as follows: 
 
• Baseline Activity-Travel Analyzer.  The baseline activity-travel analyzer reads individual trip 

records, compares them with the network data for logical consistency and missing information, and 
then generates a coherent baseline activity-travel pattern for each individual.  Baseline activity-travel 
patterns (or profiles) of all documented individuals are used by the remaining AMOS system 
components. 

 
• TDM Response Option Generator.  This module creates the “basic” response of an individual to 

a TDM strategy.  It is a neural network model that is trained by using revealed-preference and 
stated-preference data.  The modified baseline travel pattern  from the Baseline Activity-Travel 
Analyzer, demographic and socio-economic attributes, and TDM characteristics under investigation 
serve as inputs to this module. The outputs of this module are the behavioral responses.  The TDM 
measures are characterized by their cost changes, travel time changes, mode attribute changes, and 
imposition or relaxation of constraints.   

 
• Activity-Travel Pattern Modifier:  This module constitutes the activity-trip re-sequencing and re-

scheduling algorithm.  It  provides one or more modified but feasible alternative activity-travel 



patterns based on the responses provided by the TDM Response Option Generator. The inputs of 
this module include the baseline activity-travel patterns, network data, land-use data, socio-
economic and demographic characteristics, and the response options from the TDM Response 
Option Generator.  The output of this module is a modified activity-travel pattern.  The feasibility of 
a modified activity-travel pattern is checked for consistency and logic against a set of rule-based 
constraints.   

 
• Evaluation Module and Acceptance Routines:  This component evaluates the utility associated 

with a modified activity-travel pattern generated by the Activity-Travel Pattern Modifier.  
Operationally, its built-in acceptance routines assess whether a modified activity-travel pattern will 
be accepted or rejected on the basis of a human adaptation and learning model incorporating a set 
of search termination rules.  

 
• Statistics Accumulator:  This module reads all feasible accepted activity-travel patterns provided 

by the Evaluation Module and generates descriptive and frequency statistics on a daily basis. These 
descriptive and frequency statistics include vehicle miles traveled, number of trips by mode and by 
time of day, number of stops by purpose, trip chains, activity duration by purpose, travel times by 
purpose, vehicle occupancy, cold and hot starts, etc. In conjunction with baseline travel patterns, it 
can provide measures of change in travel characteristics.   

 



 
5.1  Baseline Activity - Travel Analyzer 
 
The Baseline Activity-Travel Analyzer is the first module of the AMOS model system.  Its flow structure 
is shown in the Figure 5.2.  The module reads individual trip records from the MWCOG Household 
Travel Diary Survey Data and compares them with network data for logical consistency on the basis of 
certain criteria. These criteria include spatial continuity, temporal continuity, and modal continuity. 
Spatial continuity states that the origin of a trip should match the destination of  the previous trip. 
Temporal continuity guarantees that the beginning time of a trip should be always greater than or equal 
to the ending time of the previous trip. Finally, modal continuity states that the mode of a trip is 
dependent upon the mode used in the previous trip. Any logical inconsistency against these criteria will 
be corrected by the analyzer and missing information will be supplemented. 
 

 



 
Following the logical consistency checks, the analyzer will identify certain activity-travel characteristics 
that are key parameters in subsequent components of the AMOS model system.  For example, the 
analyzer will determine whether stops are made on the way to or from work and whether auto trips are 
made while the individual is at the work place.  Identification of these parameters helps define the 
constraints under which the TDM Response Option Generator and the Activity-Travel Pattern Modifier 
must search for feasible behavioral responses.   
 
The Baseline Activity-Travel Analyzer then generates a screened baseline daily activity-travel pattern.  
All corrected and supplementary information is flagged appropriately as a note of change introduced by 
the program.  The analyzer determines whether the activity-travel records fall within the purview of the 
TDM options and provides these records as input to the TDM Response Option Generator and the 
Activity-Travel Pattern Modifier. 
 
5.2  TDM Response Option Generator 

 



 
The flow structure of the TDM Response Option Generator is shown in Figure 5.3.  Inputs to the 
generator include the modified baseline activity-travel characteristics, TDM characteristics provided by 
user, and the socio-economic characteristics of both household and individual. Characteristics of the 
TDM can be easily modified via a windows-based graphical user-interface. This property facilitates 
convenient and expeditious analysis of different TDM scenarios and levels. 

 
 
The TDM Response Option Generator employs a neural network being trained with inputs of both 
revealed-preference and stated-preference data.  A neural network is an assembly of artificial neurons 
that are usually arranged in layers.  Input variables, for example, socio-economic characteristics and the 
modified baseline activity-travel pattern etc., serve as input neurons.  A weighted set of these inputs is 
then transmitted to the next layer, and the process is continued until the output layer is obtained.  Output 
neurons indicate which outcome -- in this case a TDM response option -- is likely.  Training the neural 
network involves the estimation of weights such that the neural network will provide an appropriate 
output in response to a certain set of inputs.   
 

 



The neural network developed for the AMOS model system is based on the theory of Connectionism. 
Theory of Connectionism postulates that humans process information by breaking it down into smaller 
inter-connected elements.  The strengths of these connections are defined by the weights, estimated 
during the training of the neural network. 
 
Various response options are being considered in this version of AMOS.  These include: 
 
• No change in travel behavior 
• Change departure time for work trip 
• Switch work trip mode to transit 
• Switch work trip mode to car/van pool 
• Switch work trip mode to bicycle 
• Switch work trip mode to walk 
• Work at home 
 
An individual may respond in any one of these seven ways, given changes being brought by the 
introduction of a TDM option. Given the input variables, training the neural network will yield 
probabilities that the individual would choose each of these response options.  Based on these 
probabilities, a particular response option is chosen via a Monte Carlo simulation. The chosen response 
option serves as a key input to the Activity-Travel Pattern Modifier. 
 
5.3  Activity-Travel Pattern Modifier 
 
The Activity-Travel Pattern Modifier generates feasible alternative activity-travel patterns that an 
individual may adopt as a consequence of the response option chosen in the TDM Response Option 
Generator.  The modifier consists of a complex algorithm that can re-sequence and re-schedule 
activities, break and make trip chains, and change travel modes and activity locations.  The structure of 
the modifier is shown in Figure 5.4 and its various aspects are discussed in the following sections.   
 
5.3.1  Approach 
 
Figure 5.4 illustrates the basic approach followed by The Activity-Travel Pattern Modifier.  Its inputs 
include the baseline activity-travel pattern and socio-economic characteristics of the individual, his or her 
behavioral response to a TDM option, and secondary data bases including network data and land-use 
information.   
The Activity-Travel Pattern Modifier inspects the baseline activity-travel pattern and determines whether 
any modifications are needed.  For example, if an individual is found to travel by auto only during off-
peak periods and the implemented TDM measure is peak-hour congestion pricing, then modifications to 
the baseline activity-travel pattern are not necessary.  On the other hand, if modifications are deemed 
necessary, then the modifier will re-sequence and re-schedule activities, adjust travel modes and 
destinations, and establish new trip chains as appropriate.   
 



These modifications will result in the formation of an alternative activity-travel pattern.  The pattern is 
then sent through a series of logical consistency and feasibility checks against a set of rule-based 
constraints.  If the alternative pattern does not pass the feasibility check, the pattern is rejected and the 
modifier will search for a new pattern.  If an alternative pattern passes the feasibility check, it will be sent 
to the next AMOS component for evaluation. 

 
 
5.3.2  Activity-Trip Re-sequencing Algorithm 
 
The activity-trip re-sequencing algorithm generates alternative activity-travel patterns using a set of 
heuristic rules and constraints within which travelers make decisions.  The modifier implements a 
different algorithm for each possible behavioral response to a TDM measure.  Due to the complex 
nature of activity-travel behavior and its underlying relationships, simplifying assumptions have been 

 



adopted in the development of the first versions of these algorithms.  These assumptions are described 
as follows: 
 
• Activity and task allocation among household members is not considered.  Only the activity-travel 

pattern of one individual in a household is analyzed, independent of activity-travel behavior exhibited 
by other household members.  

• Out-of-home activity durations for various purposes are kept a constant before and after the 
introduction of the TDM measures.  However, in-home activity duration and travel times may vary. 

• The frequency with which various out-of-home activities are pursued is also kept a constant before 
and after the introduction of the TDM measures.  However, trip frequencies may vary as trip linking 
patterns may be modified. 

• The activity-trip re-sequencing algorithms do not consider multi-day activity-trip engagement.  Only 
one-day activity-travel itineraries are adjusted, independent of activity-travel itineraries on any other 
day. 

• The algorithms deal only with activity-travel pattern modifications for commuters. 
 
As such, the algorithms currently operate on a one-day baseline activity-travel pattern of one commuter 
in a household, while holding the frequency and duration of out-of-home activities fixed.  However, the 
algorithms do allow for the modification of several activity-travel attributes including: 
 
• Travel mode 
• Trip destinations (activity locations) 
• Trip timing (activity scheduling) 
• Trip chaining (activity sequencing) 
 
There may be many possible ways in which these attributes may be modified.  However, the search for 
alternative feasible patterns is made efficient in AMOS through the introduction of a series of logical 
rule-based conditions.  The following is a listing of the main rules and constraints to which all 
modifications must adhere: 
 
Spatio-Temporal Constraints 
 
• Activity Duration:  Activity duration for purpose m, Am   0, for all m = 1, ....., p. 
• Trip Duration:  Trip duration for a specific-purpose activity m, Tm   em, for all m = 1, ....., p, 

where e is the lower bound for trip duration.  Also, em = f(m, c) where m is a vector of modal 
attributes and c is a vector of network attributes for the trip. 

• Temporal Continuity:  BT(n+1) = ETn + An, where BT(n+1) represents the beginning time of trip 
(n+1). ETn represents the ending time of trip n, and An must be equal or greater than zero. 

• Spatial Continuity:  The destination place of trip (n) becomes the origin place of trip (n+1).  That 
is, D(n)   O(n+1) . 

 
Physiological Constraints 
 



• Total time spent in-home (or its equivalent), Ah   d, where d is the lower bound (minimum) of the 
time needed for a person to fulfill physiological needs including sleep, preparing and/or eating meals, 
personal and household care, etc.  This lower bound will differ from individual to individual; i.e., d = 
f(z, x) where z is a vector of employment characteristics and x is a vector of household 
characteristics. 

• In addition, certain specific activities related to satisfying the biological needs of the human body 
may have lower bounds.  Activities mentioned above, namely, sleep, eating meal, and personal care 
are likely to have lower bounds.  This may not apply to everyone under all circumstances. In 
general, Ai di, where i represents a subsistence activity.   

 
Assumptions regarding subsistence activities are expressed as follows: 
 
• A set of personal care and hygiene activities should precede the journey to work.  
• Eating meal activities generally occur during the day. 
• Sleeping usually occurs at night under a roof. 
 
As an initial effort in the AMOS implementation, scheduling these basic subsistence activities in any 
modified patterns is being kept as similar to the baseline patterns as possible.   
 
Coupling Constraints 
 
Institutional: Work Related  
 
• Spatial Fixity of Travel and Activities:  Work place is predetermined for those who always work 

at the same place or fixed in real time for construction workers, on-site service personnel, etc. 
• Temporal Fixity of Travel:  The beginning and end-times of a commute trip should fall within 

certain time bands. For example, ET(w,min)   ET(w)   ET(w,max) where ET(w) represents the 
ending time of a trip to work. ET(wmin)  and  ET(wmax)  are the minimum and maximum ending 
time of a trip. Then, the time interval within which the work trip begin time BT(w)  must satisfy 
BT(w,min)   BT(w)   BT(w,max), where BT(w,min)  and BT(w,max) refer to the minimum and 
maximum trip begin time. In addition,  BT(w,min) = ET(w,min) - T(w,max) and  BT(w,max) = 
ET(w,max) - T(w,min).  T(w) represents travel time to work. T(w,min) and T(w,max)  are the 
minimum and maximum travel time to work. T(w) is a function of modal attributes, network 
attributes, and the individual’s travel pattern. A stop on the way to work can well increase the value 
of T(w). 

 
Both of the above apply to work-related activities and trips. 
 
• Temporal fixity of activities:  Work and work-related activities must be accomplished within 

certain time intervals. The degree of their flexibility is a function of employment, personal, and 
household characteristics.  So, BA(w,min)   BA(w)   BA(w,max) where BA(w) represents the 
beginning time of work activity. BA(w,min)  and BA(w,max)  are the minimum and maximum 
beginning time of the work-related activities. Similarly EA(w,min)   EA(w)   EA(w,max) must be 



held also. EA(w) represents the ending time of work activity. EA(w,min)  and EA(w,max)  are the 
minimum and maximum beginning time of the work-related activities. These constraints apply for 
each piece of work activity.  It is important to note that temporal fixity of travel is closely related to 
the temporal fixity of activities.  For example, BT(w,max) = BA(w,max) - T(w,min).  

• Non-work activities can be performed before work, after work, or within small time windows 
during work (e.g., lunch breaks) subject to certain institutional constraints.  These constraints are 
defined below. 

 
Institutional: Non-Work Related 
 
• There are many operational formulas that may apply here.  A few examples include: OPENTnw   

BAnw   CLOSETnw. The beginning time of an out-of-home and non-work activity BAnw  is 
usually governed by the opening and closing times of the store, business and gym expressed as 
OPENTnw  and CLOSETnw. 

• EAnw < BA(w,max) or BAnw > EA(w,min) A non-work activity must end before the latest 
required work start time. Or alternatively,  a non-work activity can begin only after the earliest 
possible work end time.  These formulas can be further enhanced by including travel times in the 
relationships.  These relationships hold for any intermediate time window available for non work 
activities during work hours. 

• Both personal business and shopping trip destinations and time of the day may change subject to 
satisfying interrelated spatial and temporal constraints. 

• All school trips and child serve-passenger trips are constrained like work trips.  They have fixed 
destinations and fixed time intervals within which arrival and departure must occur.  Most of the 
formulas applicable to work and non-work activities apply to these trips. 

 
Household Role-Based Constraints 
 
• A person may be constrained to arrive at home by a certain time to take care of household duties.  

The existence and nature of this constraint is a function of household and personal demographic and 
socio-economic characteristics.  Generally, ET(h,max)   BA(h,max) , where ET(h,max) represents 
the latest allowable ending time of a trip to home and BA(h,max)  represents the latest allowable 
beginning time of in-home activity. BA(h,max) = f(z, x), where z is a vector of employment 
characteristics and x is a vector of household characteristics. 

• Household members may prefer to pursue certain activities jointly, eating meals in the evening. This 
certainly places constraints on household members’ arrival time at home in the evening  and 
consequently the departure time from work.  

 
Modal Constraints 
 
• A vehicle must be available for an auto driver trip.  Then, HHCARS > 0 where HHCARS 

represents household car ownership.  Also, a vehicle must be available at the time and location 
where the trip originates.  



• Modal continuity must be maintained.  The mode of trip (n+1) is the same as mode for trip (n) 
unless the purpose of trip (n) is home, change mode, or serve-passenger.  Use of a company car is 
permitted during work hours. 

• No intermediate stops are only allowed for carpool commute trips except for dropping off and 
picking up carpool members. 

• Transit trips are constrained by transit operating hours, schedules, and routes.  
• Walking and bicycle trips or access are constrained by bicycle availability, safety considerations, 

and distance. 
 
Activity Constraints 
 
• Activity duration will have both lower bounds and upper bounds. Then, A(i,min)   Ai   A(i,max) 

where Ai represents the activity duration for activity type i. A(i,min)  and A(i,max)  are the minimum 
and maximum duration time for activity type i, respectively.  

• The sum of all activity durations and any individual activity durations must be less than or equal to 24 
hour. This rule can be expressed as:  A(i,max)   24 hours and SAi = 24 hours. 

• Mandatory activities including going to work and attending classes are pursued first. Flexible 
activities such as personal business and subsistence shopping are performed afterwards. 
Discretionary activities including convenience shopping, recreation, and entertainment are pursued at 
last.  Trade-offs among time spent at various activities are reflected in the modified activity/travel 
patterns.   

• Certain preferences may govern the time-of-day during which certain activities are pursued.  For 
example, leisure activities such dining and going out to a movie usually occur in the evening. 

 
Value of Time 
 
• Marginal utilities of travel vary across modes, people, and environmental scenarios. 
• Route choice preferences vary across individuals with different socio-economic characteristics and 

different perceptions.  
 
The activity-trip re-sequencing algorithm uses these rules and constraints in generating alternative 
activity-travel patterns. 
 
5.3.3  Simulation of Trip Timing and Mode 
 
Attributes of trips in the new activity-travel patterns generated by the activity-trip re-sequencing 
algorithm are determined by using a series of models.  Discrete choice models have been incorporated 
to determine modes used for various trips.  Interdependency among trips, for example, the mode used 
for trip n-1 must also be used for trip n,  is explicitly accounted for in the rule-based constraints.  Trip 
departure times are also determined within the rule-based constraints while recognizing the need for 
temporal continuity and temporal fixity, for example, work trips may be fixed with respect to their 
ending times.  If a trip departure time is flexible, for example, departure time of a trip after a home 
sojourn, probabilistic rules are applied to logically infer the likely departure time.  This determination can 



be made using travel time from the network file given information on the trip origin, destination, and 
mode.  
 
In addition, there may be situations where the trip destination may be chosen.  For example, if a person 
switches from SOV to transit, it is likely that any activities done on the way to work could now be 
undertaken at alternate locations.  A location/destination choice model has not yet been incorporated 
into the activity-trip sequencing to account for this possibility.  At this time, destination locations are kept 
fixed when generating alternative activity-travel patterns.  However, future enhancements of the AMOS 
model system will incorporate a location/destination choice model that uses elaborate land-use data to 
develop attractiveness and accessibility measures of various destination opportunities. 
 
5.3.4  Feasibility and Consistency Check 
 
The alternative activity-travel pattern generated by the activity trip re-sequencing algorithm is finally 
checked for its feasibility and logical consistency.  Many of the rules and constraints defined previously 
in Section 5.3.2 are used to perform this check.  If a pattern is found to violate a rule, The Activity-
Travel Pattern Modifier discards the pattern and loops back to the activity trip re-sequencing algorithm 
to generate another pattern.  If no other feasible pattern can be generated, then another TDM response 
option is generated and activity-travel pattern modification is attempted again. 
 
If an alternative activity-travel pattern passes the feasibility check, then it is sent for further processing.  
The modified activity-travel pattern is assembled and sent to the next component of AMOS, namely, the 
Evaluation Module and Acceptance Routine. 
 
5.4  Evaluation Module and Acceptance Routines 
 
This component evaluates the utility associated with alternative activity-travel patterns generated by the 
Activity-Travel Pattern Modifier. It assesses whether a certain alternative activity-travel pattern is 
acceptable and whether the search for a new pattern should be continued.  
 
5.5  Statistics Accumulator 
 
The Statistics Accumulator constitutes the final output and reporting device of the AMOS model 
system.  Its structure is shown in Figure 5.5.  An accepted activity-travel pattern from the previous 
component serves as input to the statistics accumulator.  The accumulator examines the activity-travel 
pattern and interfaces with a statistical routine to compute various descriptive and frequency summaries 
for an individual’s daily travel pattern.  These measures include the type of activity, trip frequencies  by 
purpose, trip frequencies by mode, activity and trip frequencies by time of day, vehicle miles traveled, 
travel times, number of hot and cold starts, time-use utility, and selected demographic and socio-
economic characteristics. 
 



 
The Statistics Accumulator first records an individual data base that contains records of all feasible 
activity-travel patterns generated for that individual.  This component is accessed at several locations in 
the AMOS model system and therefore must keep a record of all feasible activity-travel patterns 
generated for an individual.  After the analysis of an individual is completed, only the final adopted 
activity-travel pattern is retained in the permanent database.  Then the Statistics Accumulator 
accumulates various statistics of the adopted activity-travel patterns of the entire sample into a 
permanent database.  This database lends itself further to regional forecasting and policy analysis. 
 
Go to Table of Contents 
 
 
Chapter 6:  Application to the Washington, D.C. Area 
 
As probably the first implementation of an activity-based policy analysis tool in the world, AMOS is 
applied to the Washington, D.C. area for the Metropolitan Washington Council of Governments 

 



(MWCOG), the MPO for that area.  The application involved an elaborate survey effort (which shall be 
referred to as the AMOS Survey) involving the collection of both revealed-preference and stated-
preference data.  This survey provided the necessary information for training the neural network in the 
TDM Response Option Generator module of AMOS.  Once the neural network training was 
completed, MWCOG's household travel survey data (trip diary data) provided the baseline travel 
patterns to which AMOS could be applied.  This section describes the AMOS survey in elaborate 
detail, presents the results of neural network training and sensitivity analysis, then provides sample 
results of the application of AMOS to MWCOG's household travel survey data. 
 
6.1  AMOS Survey 
 
The objective of the AMOS survey was to develop a data set that can be used to model individual and 
household responses to various TDM measures.  The survey introduces two innovative approaches to 
examine individuals' and households' travel behavior in response to changes in the travel environment -- 
a time-use (or activity-based) travel survey and a stated-preference (SP) approach. 
 
6.1.1  Approach 
 
The AMOS survey is a time-use (or activity-based) travel survey that explicitly posits travel behavior as 
a demand derived from individuals' demand to conduct various activities (and hence, to use time) at 
different times and locations.  Hence, a complete activity-travel diary was collected for the respondent. 
The second innovative feature of the survey was the stated-preference approach that was employed to 
gather data on the response to the introduction of TDM measures.  Stated-preference approaches 
involve asking respondents to express their preferences or responses to hypothetical scenarios that have 
been characterized in terms of attributes (in this case, changes in the travel environment).  In this survey, 
respondents were asked to identify how they would respond to a change in the travel environment 
created by specific TDM measures.  Obviously, stated-preferences are relied upon where there is no 
pre-existing data. As such, the SP approach is subject to the limitations of an imagined response as 
opposed to actual revealed-preference (RP) data.  In order to control for these types of limitations 
every means is employed in this effort to increase the realism of the hypothetical situation to which the 
respondent is exposed.  This was accomplished primarily by:  (1) explicitly exploring the impacts of the 
proposed TDM measure on the respondent's own activity-travel pattern recorded on and reported for 
the prior day (e.g., in terms of its impact on trip attributes -- time, costs, mode, etc.),  (2) checking their 
response against the potential constraints of their activity-travel pattern (e.g., a parent's obligations to 
drop off a child at day care and arrive at work by a certain hour), and (3) customizing TDM parameters 
to best represent the respondents commute situation. 
 
Together these approaches provide the basis for exploring trade-offs people may make between in-
home and out-of-home activities (e.g., rather than eating breakfast at home, a commuter may leave 
home early and eat on the road or at work to avoid peak period), re-scheduling (e.g., combining or 
deferring) activities throughout the day, and the occurrence of constraints that bind an individual to a 
particular activity-travel pattern (e.g., child care).   If an activity-based survey was conducted for an 
entire household over the course of a week, the basis for exploring trade-offs in activities between 



family members and over time could be examined.  However, this was not possible due to resource 
limitations. 
 
Based on these objectives, the survey acquired the following information for a sample of households: 
 
• general household socioeconomic characteristics (number of persons, car ownership, etc.); 
• characteristics of household occupants (age, sex, employment status, work location, etc.); 
• for a single selected individual in the household, information on his/her time-use and travel was 

collected both in-home and out-of-home and included an activity-trip diary on a particular 
weekday; 

• for the same selected individual, a set of stated-preference responses to a selected set of 
hypothetical TDM policies were gathered. 

 
6.1.2  Sample Design 
 
The target population consisted of adults who commuted regularly (3 times per week or more) to school 
or work in the MWCOG jurisdiction.  While it was recognized that a significant proportion of the 
market response to TDM measures would also come from non-commuters, higher probabilities are 
placed on commuters. 
 
The sampling frame for this survey was three dimensional:  households were selected at random, 
persons to be interviewed were selected at random from the commuters in the household, and 
activity/travel days were selected at random for persons in the sample.  Travel days were assigned 
throughout the survey so that an approximately equal number of activity/travel days were assigned for 
each weekday (Monday through Friday excluding holidays).  The representative sample of numbers 
was secured for both listed and unlisted telephone numbers in the MWCOG region. 
 
Because the respondent universe was likely to be very diverse in behavior and attitudes and because 
hypothetical TDM scenarios had to be customized for each individual's activity and travel pattern, 
complex skipping patterns were required in the survey questionnaire to collect the desired information in 
an effective manner.  Hence, an on-line computer aided telephone interviewing (CATI) approach was 
selected which was able to automatically control all skipping patterns with complete reliability and no 
time delays. 
 
6.1.3  TDM Measures Considered in AMOS Survey 
 
Following are the TDM measures that were selected in conjunction with a working group consisting of 
representatives from MWCOG, FHWA and EPA for the AMOS survey.  The selection of these TDM 
measures was a function both of those proposed in the MWCOG region, as well as those that provided 
a number of analytical challenges. 
  
TDM #1: 

 
Parking Pricing: 



 
incremental parking surcharge at work place  
--  $1 to $3 per day in suburbs  
--  $3 to $8 per day in DC and downtowns 

 

 
walking time trade-offs: 10 minutes, 15 minutes and 20 minutes  
Improved Bicycle/Pedestrian Facilities: 

 
TDM #2:  

well-marked and well-lighted bicycle paths and a secure place to park a bike 
wherever a person went  

TDM #3: 
 
TDM #1 & TDM #2  
Parking Pricing & Employer-Supplied Commuter Voucher 

 
TDM #4:  

-- $40 to $80 per month for both  
Congestion Pricing  

 
TDM #5:  

--10% to 30% time savings and $.15 to $.50 charge per mile  
TDM #6: 

 
TDM #4 & TDM #5 

 
TDM #1, the parking charge, was complicated by two factors.  First, parking charges vary over the 
MWCOG region.  Second, there is a considerable amount of free parking even in the central business 
districts as well as the outer suburbs.  Considering these, the level of parking pricing is expressed in 
terms of surcharges.  For the customization of SP questions, MWCOG provided a detailed map of 
average daily parking costs by area.  Rather than trying to get too specific about the location of the 
respondent's workplace, the survey obtained the city where the person worked.  According to 
MWCOG, average daily parking costs range roughly between $1 and $3 in the suburbs (i.e., inside the 
“Beltway”), and between $4 and $7.50 in the central areas.  For each respondent, a level of parking 
pricing was chosen at random from the appropriate range. 
 
TDM #2, improved bicycle/pedestrian facilities, is described as continuous, well-marked and well-
lighted network of bicycle and pedestrian paths and a secure place to park a bike wherever a person 
went.   
 
TDM #1, and TDM #2, were combined as a separate TDM scenario to explore the potential for 
synergistic rather than merely additive effects. 
 
TDM #4 provided an employer-supplied commuter voucher and a supplementary parking charge over 
and above what the commuter currently paid at the time of the survey.  The MWCOG region has 
considered a combination of $60 monthly benefit and $60 supplementary monthly parking charge, 
which would result in a zero net cost to single-occupant vehicle (SOV) users.  MWCOG's proposed 
charges were used as guidelines for those combinations developed for the AMOS survey.  
 
TDM #5 was a congestion pricing measure.  MWCOG reported their congested hours (facilities 
operating at level of service E or F) had been from about 6:00 am to 9:30 am and about 4:00 pm to 
7:30 pm.  The AMOS survey simplified this by making the congestion applicable from 6:00 am to 9:00 



am and from 4:00 pm to 7:00 pm.  Any driver whose trip fell wholly or partly within these periods was 
charged the full congestion price. 
 
Potential time savings have been speculated at 10% to 30% for congestion pricing of $0.15 to $0.35 
per mile by MWCOG.  The AMOS survey used an upper limit of $0.50 per mile.  The congestion price 
was applied to the entire trip distance, not just the portion on the freeways.  The scenario thus 
represents an area-wide pricing scheme.  In the survey time savings of 10% to 30% of total travel times 
were applied to respondents’ actual commute times while avoiding combinations of high congestion 
pricing and low time savings, or low congestion prices with high time savings. 
 
Once again, TDM #4 and TDM #5 were combined into a new scenario in TDM #6 to explore the 
potential for synergistic effects when TDM measures are combined. 
 
6.1.4  Survey Design 
 
The following topics were covered in the survey questionnaire: 
 
• Commute characteristics including use of alternative travel modes 
• Work schedules (last week)  
• Stops made on the way to/from work (last week) 
• Trips made while at work (last week) 
• One-day time use and travel data for the assigned activity travel day 
• Parking cost and walking distance trade-offs  
• Responses to SP questions for hypothetical TDM scenarios: 
• "What would you do if  (a description of one TDM was provided that included the impacts on the 

trip attributes for the commuters' activity travel pattern from the previous day)?"  
• The respondent was not prompted with a list of possible changes unless necessary.  The eight 

responses that were pre-coded included: 
1. Changed departure time to work/school 
2. Walk to work/school 
3. Bicycle to work/school 
2. Carpool to work/school 
4. Transit to work/school 
3. Work at home 
4. Do nothing different 
5. Other (not specified) 

 
If relevant, the respondent was asked a series of questions that were tied to his initial response, such as: 
• for change to transit: "how would you perform chauffeuring and other stops on the way to/from 

work?" 
• for change in departure time: "when would you have left for work?" 
• for many responses: would this have changed any other activities that you did? 
• Household and person demographics and socio-economics. 



 
A complete copy of the survey instrument is included in appendix B. 
 
6.1.5  Survey Administration 
 
The AMOS survey was a multi-phase CATI survey with mail-out instruments conducted, as follows: 
 
• Phase 1 --initial CATI:  screening, commute characteristics, work schedules, demographics, 

assign travel dates, etc. 
• Phase 2 -- mail-out: memory joggers to record travel itinerary 
• Phase 3 -- second CATI:  time-use and travel survey, stated-preference TDM questions 

customized to each individual's commute situation 
 
The initial contact with the household was used to gather household occupant information, to recruit a 
selected individual as the commuter to provide follow-on response in Phases 2 and 3 of the survey, and 
to assign a day for recording his/her activities and travel diary.  In the second phase, a "memory jogger" 
was mailed to the selected individual for him/her to record their activities and trips on the assigned day.  
In the third phase, the activity travel information was retrieved and the stated-preference portion of the 
survey was administered, on the day following the assigned travel day. 
 
The AMOS survey employed a number of techniques to insure that unbiased data was collected and to 
optimize the response rates, as follows: 
 
• A combined random digit dialing and reverse directory were used to efficiently obtain a sample of 

both listed and unlisted households; 
• Introductory letters describing the survey were sent prior to the initial household telephone contact 

on the survey contractor's letterhead to listed households; 
• The sample was based on the proportion of population from counties within MWCOG's modeled 

region including the District of Columbia, Virginia and Maryland; 
• The initial CATIs were conducted from 11/19/94 to 12/31/94 with travel dates assigned from 

11/28/94 to 12/16/94.   
 
The final sample consisted of 656 fully completed survey instruments (i.e., completed through the 
CATI-2).  The activity travel diaries for the completed CATI-2 surveys were evenly distributed across 
the five day work week.  
 
Table 6.1 shows the response rates obtained in the conduct of this survey.  Of the final 656 completed 
responses, 112  of them, or 17%, were from unlisted numbers.  This ratio of listed to unlisted completed 
CATI-2 surveys is comparable to the actual proportion of listed to unlisted phones numbers in the 
MWCOG region.  The low response rate for the unlisted phone numbers may make this an 
unrepresentative sample of that population.  The response rates for the listed phone number were 
significantly higher, i.e., 34% of all live calls to listed phone numbers completed the entire survey 
compared to a completion rate of 10% for unlisted numbers. This difference is likely due to a number of 



factors including that people who don't list their phone numbers use this as a means to screen out certain 
types of interactions such as surveys, as well as the potential increase in credibility that the introductory 
letter provided that was sent to listed phone numbers whose addresses were available. 
 
 Table 6.1:  AMOS Survey Completion Rates  

 
 

Listed with Letters  
 

Unlisted 
 

Total Sample  
Total Attempted Numbers 

 
 

 
 

 
  

2,972 
 

 
 

 
 

  
2,970 

 
 

 
 

 
  

5,942 
 

 
 

 
 

  
Live/Answered Calls 

 
1,583 

 
1,081 

 
2,664 

 
No. Completed CATI-1 

 
949 (60%) 

 
334 (31%) 

 
1283 (48%) 

 
No. Qualified and Agreed 

 
748 

 
255 

 
1,003 

 
No. Completed CATI-2 

 
544 

 
112 

 
656 

 
as % of Qualified 

 
72% 

 
44% 

 
65%  

as % of Live Calls 
 

34% 
 

10% 
 

25% 
 
6.2  AMOS Survey Sample Profile 
 
Table 6.2 shows average household characteristics for the respondent sample of 656 households.  The 
average household size is 2.7, while the average number of commuters per household is 1.7. On 
average, there are 2 vehicles and 1.4 bicycles per household.  90% of the households have at least one 
vehicle per commuter.  A little over one-half of the households may be considered to fall within the 
middle income class.  About one-fifth of the households have at least one child less than five years of 
age. 
 
 Table 6.2:  Average Household Characteristics 
 (N=656 households)  

Characteristic 
 

Average Value   
Household Size 

 
2.7  

No. of Commuters 
 

1.7  
No. of Vehicles 

 
2.0  

No. of Bicycles 
 

1.4  
% #Vehicles   Commuters 

 
90%  

% Income  $30K - $75K 
 

53%  
% Child < 5 years 

 
20% 

 



Table 6.3 provides descriptive statistics on the survey respondents who provided detailed revealed and 
stated-preference activity-travel data. 
 
Almost all of the respondents are licensed and employed.  Nearly 58% of the respondents are males.  
About 70% of the respondents indicated driving alone (SOV) as their usual mode of transport to work 
(used 3 or more days per week).  Average commute distance for the sample is 15.2 miles while the 
average commute time (measured as direct home-to-work travel time) is found to be 31.7 minutes.  
Quite a few of the respondents indicated that they trip chained at least one day in the previous week 
(either during the journey to work or from work).  About 13% of the respondents stopped on the way 
to or from work to serve/pick up a child on at least one day.  Nearly one-half of the respondents 
indicated that they stopped on the way home from work for an activity other than serving a child.  As 
such, it is possible that the implementation of TDM strategies may entail rescheduling of trips and the 
formation or breaking up of trip chains. 
 
6.3  Analysis of Stated Responses to TDM Strategies 
 
As mentioned in Section 6.1, the respondents were presented with six hypothetical customized TDM 
scenarios and asked how they would respond to them.  Their responses were coded into 8 possible 
categories.  Table 6.4 shows the distribution of responses for the various TDM strategies. 
 

Table 6.3:  Respondent Characteristics 
(N=656 Respondents)  

Characteristic 
 

Average Value   
% 30 - 49 years age 

 
60%  

% Drivers License 
 

98%  
% Male 

 
58%  

% Employed (outside home) 
 

99%  
Modal Shares:  Work Trip%   

Drive Alone (SOV)% 
 

70%  
Car/Van Pool% 

 
16%  

Transit (Bus + Rail)% 
 

10%  
Bike + Walk 

 
3%  

Commute Distance (miles)%   
< 5 miles% 

 
15.222%  

5-25 miles 
 

61%  
Home-Work Travel Time  (min.)% .   

<10 min.% 
 

31.712%   



10-30 min 48%  
Trip Chaining Patterns (1+ days)  

Home-Work: Serve Child 
 

13%  
Home-Work: Other Activity 

 
28%  

Work-Home: Serve Child 
 

14%  
Work-Home: Other Activity 

 
49%  

At Work: All Activities 
 

40% 
 
6.3.1  Distributions of Stated Responses 
 
An examination of the response distributions indicates that about 60-80% of the sample would not 
change their baseline activity-travel pattern even after the introduction of a TDM strategy.  Interestingly, 
combinations of TDM strategies do not seem to provide cumulative impacts.  Congestion pricing yields 
the largest percent change (nearly 40%).  In general, the indications provided by the table are as 
anticipated.  Parking pricing strategies have little impact on departure time, but substantial impact on 
mode switching.  Congestion pricing appears to have a substantial effect on both departure time and 
mode to work.  Improved bicycle and pedestrian facilities (TDM#2) was met with 11% of the sample 
indicating a switch to bicycle.  Interesting results were obtained when these response distributions were 
cross-tabulated against various socio-demographic and commute characteristics.  Sections 6.3.2 and 
6.3.3 provide a sample of such cross-tabulations in an effort to explore factors that contribute to 
variations in stated choices across different population segments. 
 

Table 6.4:  TDM Strategy Response Distributions  
(N=656 Respondents)  

Response 
 
TDM #1 

 
TDM #2 

 
TDM #3 

 
TDM #4 

 
TDM #5 

 
TDM #6  

No Change 
 

70% 
 

82% 
 

75% 
 

71% 
 

61% 
 

62%  
Change Departure Time to 
Work 

 
1% 

 
0% 

 
0% 

 
1% 

 
20% 

 
12% 

 
Switch to Transit  

 
11% 

 
3% 

 
5% 

 
10% 

 
8% 

 
10%  

Switch to Car/Vanpool 
 

10% 
 

3% 
 

5% 
 

9% 
 

4% 
 

6%  
Switch to Bicycle 

 
1% 

 
11% 

 
12% 

 
6% 

 
4% 

 
5%  

Switch to Walk 
 

2% 
 

1% 
 

1% 
 

1% 
 

1% 
 

1%  
Work at Home 

 
2% 

 
0% 

 
1% 

 
1% 

 
1% 

 
1%  

Other 
 

4% 
 

1% 
 

1% 
 

2% 
 

2% 
 

3%  
TDM#1: Parking Pricing 
TDM#2: Bike/Ped Improvements 
TDM#3: TDM#1 + TDM#2 
TDM#4: Parking Pricing+Empl Voucher 



TDM#5: Congestion Pricing 
TDM#6: TDM#4 + TDM#5 

 
Statistical tests were performed to examine the null hypothesis of equality of response distributions 
across the TDM measures.  The response distribution to TDM#1 was found to be significantly different 
(at the 0.05 level) from that to TDM#2.  The c2 test statistic was found to be 22.8 with 7 degrees of 
freedom. Similarly, the response distribution to TDM#1 was found to be different from that to TDM#3, 
the combination TDM strategy.  The response distribution to TDM#1 was found to be significantly 
different from that of TDM#5, but not significantly different from that of TDM#4.  This seems to indicate 
that the effect of the employer benefit/voucher program was not significant.  It was also found that, when 
compared against the combined TDM strategy TDM#6, both TDM#4 and TDM#5 response 
distributions were not statistically different.  Table 6.5 provides selected c2 test statistics comparing 
various response distributions. 
 
 Table 6.5:  Statistical Tests of Similarity of Response Distributions   

TDM Distributions 
Compared 

 
c2  Test - Statistic 

 
Degrees of Freedom 

 
Significance Level (p 

value)  
TDM #1  vs.  TDM #2 

 
22.8 

 
7 

 
0.0019  

TDM #1  vs.  TDM #3 
 

16.86 
 

7 
 

0.0183 
 
TDM #2  vs.  TDM #3 

 
2.35 

 
6 

 
0.8848 

 
TDM #1  vs.  TDM #4 

 
5.01 

 
7 

 
0.6585 

 
TDM #1  vs.  TDM #5 

 
24.0 

 
7 

 
0.0011 

 
TDM #4  vs.  TDM #5 

 
20.5 

 
7 

 
0.0046  

TDM #4  vs.  TDM #6 
 

10.80 
 

7 
 

0.1474  
TDM #5  vs.  TDM #6 

 
2.94 

 
7 

 
0.8908 

 
As shown above, the response distribution to TDM #3 is significantly different from that to TDM #1.  
There appear to be synergy effects produced by combining parking pricing and bike/pedestrian facility 
improvement.  A further inspection of the distributions (Table 6.4), however, indicates that this is not the 
case.  In response to parking pricing alone (TDM #1), 70% of the respondents indicated they would 
make no change while 30% indicated some adjustments.  When presented with the synergy scenario of 
parking pricing combined with bike/pedestrian facility improvement (TDM #3), the fraction of the 
respondents indicating behavioral changes decreased to 25%.  Since the latter synergy scenario 
represents a larger magnitude of change in the travel environment than does the former, it should have 
produced a larger fraction of respondents indicating behavioral changes.   
 
This inconsistent result is due to a total of  76 respondents (12.0%) who responded to TDM #1 with 
behavioral changes while indicating “no change” to TDM #3.  Although this inconsistency is much less 
frequent between the responses to TDM #2 and TDM #3 (19 respondents, or 3.0%), the results cast 



serious doubt on the validity of the response to the portion of the SP survey that concerns TDM #3.  It 
is possible that this particular synergy combination was not presented to respondents in a well 
understandable manner.  It is however unlikely that respondent fatigue or the length of the interview was 
the problem because the second synergy combination, TDM #6, yielded consistent results.  In any 
event, the responses to TDM #3 are not used in the analyses presented in the rest of this report due to 
the inconsistencies in the data. 
 
6.3.2  Responses to Congestion Pricing (TDM #5) 
 
As shown in Table 6.4, there are six TDM response distributions.  Cross-classifying these response 
distributions against a host of socio-demographic variables would potentially yield 30 to 40 tables.  As 
such, for purposes of brevity, only cross-classification tables for the response distribution of TDM #5, 
Congestion Pricing and TDM #2, Bike/Pedestrian Facility Improvement, are presented in this section 
and in Section 6.3.3.  Many of the findings from this analysis are also found to be applicable to response 
distributions for other TDM strategies as well.   
 
Table 6.6 shows the response distribution for congestion pricing by usual work mode.  The usual work 
mode is defined as that mode used 3 or more days per week.  The transit category includes both bus 
and metro users. From the table, it can be seen that the TDM strategy has the largest impact on SOV 
commuters; this result is as anticipated. 
 
 Table 6.6:  Congestion Pricing Response Distribution by Work Mode  

 
TDM Response Option 

 
SOV (N=460) 

 
Car/Vanpool 

(N=103) 
 

Transit (N=66)  
No Change 

 
57% 

 
74% 

 
83%  

Change Departure Time to Work 
 

24% 
 

11% 
 

7% 
 
Switch to Transit 

 
7% 

 
6% 

 
n/a 

 
Switch to Car/Van Pool 

 
4% 

 
n/a 

 
2% 

 
Switch to Bicycle 

 
4% 

 
4% 

 
6% 

 
Switch to Walk 

 
0% 

 
2% 

 
2%  

Work at Home 
 

1% 
 

2% 
 

0%  
Other 

 
2% 

 
2% 

 
0%  

c2 test-statistic = 35.515; d.f. = 14; p=0.0012 
 
Approximately one-quarter of SOV users would change their departure time to avoid congestion 
pricing.  About 15% would change their commute mode.  In other words, SOV users appear to be 
more amenable to changing their departure time rather than their mode of travel.  As car/van pool users 
would share the costs of congestion pricing, the 11% change in departure time and 12% mode switch is 
understandable.  However, nearly three-quarters do not see the need to change their behavior.  As far 



as transit commuters are concerned, 17% are found to indicate that they would change their behavior.  
Further investigations into the characteristics of this subsample showed that they were those who used 
SOV as their transit access mode.  As their access trip would be subject to congestion pricing, they 
presumably felt the need to change their behavior.  The c2 test shows that the response distributions 
differ significantly across mode groups at the 95% confidence level.   
 
Table 6.7 shows the response distribution by commute distance. 
 
 Table 6.7:  Congestion Pricing Response Distribution by Commute Distance  

Commute Distance 
 

Change Mode 
 

Change Departure Time  
< 5 miles (N=142) 

 
18% 

 
11%  

5 - 15 miles (N=266) 
 

18% 
 

23% 
 
15 - 25 miles (N=120) 

 
15% 

 
26%  

25 - 50 miles (N=97) 
 

17% 
 

19%  
> 50 miles (N=8) 

 
0% 

 
13%  

c2 test-statistic = 15.102; d.f. = 4; p=0.0045 
 
Except for the very short distance commuters (<5 miles), all others seem to indicate a greater willingness 
to change departure time than mode to work.  Very short distance commuters may be able to switch 
modes relatively easily when compared with longer distance commuters.  Commuters whose distance to 
work lies between 5 and 25 miles appear more inclined to change departure time than mode.  As the 
commute distance increases beyond 25 miles, the willingness to change departure time reduces.  
Nobody with a commute distance greater than 50 miles was willing to change mode; possibly very long 
commutes are not flexible with respect to mode shifts.  In general, commute distance is found to 
significantly affect individual's response options; the c2 test-statistic is found to be significant at the 0.05 
level.  
 
Table 6.8 shows the variation in response distribution by the need for trip chaining on the way from 
home-to-work. Of the 656 respondents, 226 indicated that they had stopped on at least one day the 
previous week on the way from home-to-work.  These commuters are found to be more resistant to 
changing their mode when compared with those who did not stop at all the previous week.  However, 
they are almost equally inclined to change their departure time.  It appears that trip chaining acts as a 
deterrent to mode switching, but not to departure time shifts.  Approximately one-fifth of the sample 
responded with a change in departure time whether or not they trip chained at least one day the 
previous week.  However, with regard to mode shifts, 20% of those who did not trip chain at all 
indicated a willingness to change mode.  The corresponding percentage for those who trip chained at 
least one day the previous week is 11%.   Trip chaining is found to be significantly related to the 
response distribution at a p-value of 0.0628.  If SOV commuters are isolated in the case of Table 6.8, 
then the percent of those with no change becomes 53% and those who change departure time increases 
slightly to 24%, while all other commuter categories show little change, consistent with the above 
discussion. 



 
 Table 6.8:  Congestion Pricing Response Distribution by Trip Chaining  

TDM Response Option 
 

 Stops on 0 Days(N=430) 
 
Stops on 1+ Days(N=226)  

No Change 
 

57% 
 

67%  
Change Departure Time to Work 

 
19% 

 
20%  

Switch to Transit 
 

9% 
 

5%  
Switch to Car/Van Pool 

 
5% 

 
3%  

Switch to Bicycle 
 

5% 
 

2%  
Switch to Walk 

 
1% 

 
1%  

Work at Home 
 

1% 
 

0%  
Other 

 
2% 

 
1%  

c2 test-statistic = 13.406; d.f. = 7; p=0.0628 
 
Finally Table 6.9 explores the influence of gender and household role on TDM response distributions.  
The gender role is defined by the gender (male or female) of the respondent coupled with the presence 
or absence of at least one stop to serve a child the previous week. 
 
 Table 6.9:  Congestion Pricing Response Distribution by Gender Role  

TDM Response Option 
 

Change Mode 
 

Change Departure Time  
MALE 

 
18% 

 
22%  

Serve-Child Stop (N=35) 
 

6% 
 

29%  
No Stop (N=347) 

 
19% 

 
21%  

FEMALE 
 

15% 
 

16%  
Serve-Child Stop (N=47) 

 
9% 

 
13%  

No Stop (N=227) 
 

17% 
 

17% 
 
In general, a larger percentage of males are willing to change their behavior.  Forty percent of males 
would change either their mode or departure time, while the corresponding percentage for females is 
only 31%.  Also, the presence of a stop to serve a child appears to reduce the flexibility of changing 
behavior for both males and females.  Only 35% of males with a serve-child stop are willing to change 
their behavior, while 40% of those with no stop are willing to change.  Similarly, for females, the 
corresponding percentages are 22% and 34%.  Interestingly, both of these percentages are lower for 
females indicating their possibly greater household roles, and consequent reduced flexibility.  
 
The analysis presented here is quite preliminary in nature and emphasizes bivariate relationships.  In 
order to model the stated responses more accurately, it would be necessary to conduct a rigorous 
multivariate analysis using appropriate discrete choice modeling methods.  Such models are currently 
under development and will be available for dissemination in the near future.  However, the tabulations 



in this section provide some preliminary insights into the types of variables that influence TDM response 
distributions.  Notably, it is found that trip chaining deters mode change, but not departure time changes. 
 Also, females with a serve-child stop show the lowest propensity to change their commute behavior.  
Broadly, these findings point to the need for including household role and life-cycle variables as well as 
trip chaining characteristics in discrete choice modeling efforts.   
 
6.3.3  Responses to Bike/Pedestrian Facility Improvement (TDM #2) 
 
Responses to TDM #2, Bike/Pedestrian Facility Improvement, are analyzed in this section.  As one may 
expect, the distribution of responses is strongly associated with commute distance (Table 6.10).  Quite 
notably over a quarter of respondents whose commute distances were 1.5 miles or less indicated that 
they would switch to cycling or walking to work if TDM #2 were implemented.  This percentage drops 
rapidly when commute distance exceeds 10 miles and declines to 3%. 
 

Table 6.10:  Bike/Pedestrian Facility Improvement 
Response Distribution by Commute Distance 

 
Commute Distance 

 
Switch to 
Bike/Walk 
(N = 69) 

 
Other 

Changes 
(N = 46) 

 
No 

Change 
(N = 520) 

 
Total 

(N = 635)  
< 1.5 miles (N = 47) 

 
25.5% 

 
8.5% 

 
66.0% 

 
100%  

1.5 - 5 miles (N = 87) 
 

19.5% 
 

9.2% 
 

71.3% 
 

100%  
5 - 10 miles (N = 139) 

 
12.9% 

 
7.9% 

 
79.1% 

 
100%  

10 - 20 miles (N = 200) 
 

8.0% 
 

6.5% 
 

85.5% 
 

100%  
20 - 30 miles (N = 102) 

 
3.9% 

 
5.9% 

 
90.2% 

 
100%  

> 30 miles (N = 60) 
 

3.3% 
 

6.7% 
 

90.0% 
 

100%  
Total 

 
10.9% 

 
7.2% 

 
81.9% 

 
100%  

2 test statistic = 30.6; d.f. = 10, p = 0.0007 
 
As expected, younger commuters are more likely to respond to TDM #2 by switching to cycling or 
walking to commute (Table 6.11).  It can be also seen that male commuters are more likely to take 
advantage of improved bike/pedestrian facilities (Table 6.12).  Although these tendencies are clear in 
the tables, they are not statistically significant, presumably because the tables are dominated by 
respondents in the “no change” category. 
 
 Table 6.11:  Bike/Pedestrian Facility Improvement Response Distribution by Age 

 
Age 

 
Switch to 
Bike/Walk 
(N = 69) 

 
Other 

Changes 
(N = 46) 

 
No 

Change 
(N = 518) 

 
Total 

(N = 633)  
19 - 29 (N = 94) 

 
12.8% 

 
10.6% 

 
76.6% 

 
100%  

30 - 39 (N = 210) 
 

13.3% 
 

6.2% 
 

80.5% 
 

100%      



40 - 49 (N = 176) 9.1% 9.7% 81.2% 100%  
50 - 59 (N = 118) 

 
9.3% 

 
3.4% 

 
87.3% 

 
100%  

> 60 (N = 35) 
 

5.7% 
 

5.7% 
 

88.6% 
 

100%  
Total 

 
10.9% 

 
7.3% 

 
81,8% 

 
100%  

2 test statistic = 9.84; d.f. = 8, p = 0.276 
 
 
 Table 6.12:  Bike/Pedestrian Facility Improvement Response Distribution by Sex  

Sex 
 

Switch to 
Bike/Walk 
(N = 69) 

 
Other 

Changes 
(N = 46) 

 
No 

Change 
(N = 520) 

 
Total 

(N = 635) 

 
Male (N = 372) 

 
12.1% 

 
7.5% 

 
80.4% 

 
100%  

Female (N = 263) 
 

9.1% 
 

6.8% 
 

84.0% 
 

100%  
Total 

 
10.9% 

 
7.2% 

 
81.9% 

 
100%  

2 test statistic = 1.602; d.f. = 2, p = 0.449 
 
Responses to TDM #2 is only weakly associated with the presence of stops made during commute 
trips.  Table 6.13 shows the distribution of responses by the presence of stops on the way to or from 
work to drop off or pick up a child.  Only 2.5% of the respondents who made such stops at all during 
the last week indicated they would make some behavioral adjustments other than switching to cycling or 
walking to work, while 87.5% of them indicated “no change.”  With respect to the switch to the bicycle 
or walk mode, however, practically the same fraction (10.0%) of these respondents chose to switch as 
those who did not stop to pick up or drop off children (11.0%).  The association, however, is not 
statistically significant at the 10% level. 
 

Table 6.13:  Bike/Pedestrian Facility Improvement Response Distribution by Number of 
Serve-Child Stops During Commute Trips  

 
Serve-Child Stops 

 
Switch to 
Bike/Walk 
(N = 69) 

 
Other 

Changes 
(N = 46) 

 
No 

Change 
(N = 520) 

 
Total 

(N = 635)  
None (N = 555) 

 
11.0% 

 
7.9% 

 
81.1% 

 
100%  

On 1+ Day (N = 80) 
 
10.0% 

 
2.5% 

 
87.5% 

 
100%  

Total 
 
10.9% 

 
7.2% 

 
81.9% 

 
100%  

2 test statistic = 3.26; d.f. = 2, p = 0.1961 
 
Contrary to this result, those respondents who made stops during their commute trips for purposes 
other than dropping off or picking up children are more likely to switch to the bicycle or walk mode than 
those who did not make such stops (Table 6.14).  The fraction of respondents who indicated “no 



change” is very similar between the two groups, while those making such stops tended not to make 
other changes.  The association, however is statistically not significant. 
 

Table 6.14:  Bike/Pedestrian Facility Improvement Response Distribution by Number of 
Other Stops During Commute Trips  

 
Stops Other than to 
Serve Child 

 
Switch to 
Bike/Walk 
(N = 69) 

 
Other 

Changes 
(N = 46) 

 
No 

Change 
(N = 520) 

 
Total 

(N = 635)  
None (N = 459) 

 
10.0% 

 
8.3% 

 
81.7% 

 
100%  

On 1+ Day (N = 176) 
 

13.1% 
 

4.5% 
 

82.4% 
 

100%  
Total 

 
10.9% 

 
7.2% 

 
81.9% 

 
100%  

2 test statistic = 3.54; d.f. = 2, p = 0.1702 
 
The analysis here indicates that commute distance is the primary factor that affects commuters responses 
to bike/pedestrian facility improvement as a TDM strategy.  Age and sex are also associated with the 
intention to switch to the bicycle or walk mode.  Overall, however, statistical indications are weak.  The 
dominance of commute distance as a factor contributing to commuters intended reaction to this TDM 
strategy implies that this measure must be carefully implemented while considering the distribution of 
residence and work locations and targeting those neighborhoods where residence-job proximity exists. 
 
6.4  Implementation of TDM Response Option Generator 
 
The AMOS survey data described in the previous sections was used to develop and implement the 
TDM response option generator.  This section describes the neural network methodology, neural 
network “training” procedures, and provides results of a sensitivity analysis performed on the AMOS 
survey sample. 
 
6.4.1  Development of Neural Networks 
 
The TDM response option generator consists of a neural network that is trained, using results of the 
AMOS survey, to recognize a pattern of inputs and provide an appropriate output.  In this application 
inputs consist of baseline travel patterns, land-use and socio-economic data, travel supply data, and 
TDM characteristics.  The output comprises a set of behavioral responses of an individual to the TDM 
under investigation.  This section is aimed at providing a brief overview of neural networks followed by 
a discussion of the neural network currently being implemented in AMOS. 
 
A neural network may be considered a general-purpose function estimator or pattern recognizer.  A 
neural network is an assembly of artificial neurons that is intended to mimic the learning behavior of the 
human mind.  These neurons are usually arranged in several layers, namely an input layer, an output 
layer, and quite often, one or more intermediate hidden layers.  Neurons in the input layer accept inputs 
and re-transmit them to each neuron in the next layer.  If one or more hidden layers is included, each 
neuron in a hidden layer accepts a weighted set of inputs from the previous layer and transmits a signal 



to all neurons in the next layer.  Finally, neurons in the output layer accept inputs from the last hidden 
layer and produce the output of the neural network.   
 
A neuron is the basic building block of the neural network.  Each neuron receives an activation, from 
which it produces an output defined by its activation function.  The activation of a neuron is simply a 
weighted sum of its inputs.  The output signal of a neuron is determined as follows: 
 

Sni = f ni (x ni) 
 
where S ni, f ni, and x ni are the output signal, the activation function, and the activation of the i-th 
neuron in layer n.   The activation, x ni, is given by, 
 

 
 

where  is the output signal of the j-th neuron in layer n-1 and  is the weight applied to the 
signal from the j-th neuron in layer n-1.  The weights are the quantities that determine the performance 
of a neural network.  Training a neural network consists of adjusting the weights so that the desired 
outputs, associated with different patterns of inputs, are achieved. 
 
Neural networks present certain key advantages that make their adoption in AMOS appealing.  Neural 
networks are general purpose function estimators that have been demonstrated to be able to replicate a 
wide variety of functions with rather small numbers of neurons (say, 50 to 100).  Thus neural networks 
could be used to implement general purpose choice functions for individuals responses to transportation 
policies.  The neural network could represent non-linear relationships that are not easily embodied in 
current choice models.  Conceivably, neural networks could also be trained to generate a sequence of 
activities (rather than just a basic behavioral response) given a set of input data.  In addition, neural 
networks could be used as pattern recognizers to classify various sequences of activities.  More recent 
advances in neural network applications have seen the combining of neural networks with fuzzy set 
theory and fuzzy logic to develop neural networks that embody relationships difficult to quantify or 
establish deterministically. 
 
6.4.2  Results of Neural Network Training Using AMOS Survey Data 
 
The trained neural network is applied to trip diary data and other information available in the 1994 
MWCOG Household Travel Survey (described later in Section 6.5).  This calls for the judicious 
selection of input and output nodes for defining the neural network, as the neural network must be 
trained using a set of variables that is available in both the AMOS survey database and the MWCOG 
survey database. 
 



The two databases were compared and variables common to both were identified.  This exercise 
yielded various alternative neural network structures.  At this time, the neural network that utilizes the 
most information available in the databases and provides the best results (in terms of predictive 
accuracy) is found to be one that uses 36 input nodes and 8 output nodes.  The 36 input nodes are: 
 
• Parking pricing level for TDM #1 
• Employer benefit for TDM #4 
• Parking charge (per month) for TDM #4 
• Congestion pricing for TDM #5 
• Travel time reduction for TDM #5 
• Respondent age 5-15 years; Dummy=1 if yes, =0 otherwise 
• Respondent age >15 years; Dummy=1 if yes, =0 otherwise 
• Respondent age unknown; Dummy=1 if yes, =0 otherwise 
• Sex of respondent; =1 if male, =0 otherwise 
• Midpoint of household income category in the range $0 to $150,000 
• Household income > $150,000? =1 if yes, =0 otherwise 
• Household income unknown? =1 if yes, =0 otherwise 
• Number of vehicles owned by household in the range 0 to 8 
• Number of vehicles in household > 8?  =1 if yes, =0 otherwise 
• Number of vehicles in household unknown?  =1 if yes, =0 otherwise 
• Number of persons in household who commute regularly; range 0 to 8 
• Number of commuters in household > 8? =1 if yes, =0 otherwise 
• Number of persons in household more than 5 years of age; range 0 to 14 
• Number of persons more than 5 years > 14?  =1 if yes, =0 otherwise 
• Number of persons more than 5 years unknown?  =1 if yes, =0 otherwise 
• Number of persons 5 years of age or less; range 0 to maximum value 
• Residence is a single family unit?  =1 if yes, =0 otherwise 
• Residence is a multi-family unit?  =1 if yes, =0 otherwise 
• Residence is of other type?  =1 if yes, =0 otherwise 
• Commute distance in miles; range 0 to 240 miles 
• Commute distance unknown?  =1 if yes, =0 otherwise 
• Work mode on travel day is SOV?  =1 if yes, =0 otherwise 
• Work mode on travel day is car/vanpool? =1 if yes, =0 otherwise 
• Work mode on travel day is bicycle or walk?  =1 if yes, =0 otherwise 
• Work mode on travel day is bus, rail, train?  =1 if yes, =0 otherwise 
• Worked at home on travel day?  =1 if yes, =0 otherwise 
• Number of stops to serve child on way from home to work 
• Number of stops for any other purpose on way from home to work 
• Number of stops to serve child on way from work to home 
• Number of stops for any other purpose on way from work to home 
• Number of car trips while at work 
 



Each variable above constitutes one input node.  It can be seen that the inputs to the neural network 
include socio-economic characteristics, demographic characteristics, commute characteristics, work 
mode information, and trip chaining (stop) patterns.   
 
As noted earlier in Section 6.3.1, survey responses to TDM #3, the synergy combination of parking 
pricing and bicycle/pedestrian facility improvement, are not consistent with those to TDM #1, parking 
pricing. Furthermore, TDM #2, bicycle/pedestrian facility improvement, is qualitatively quite different 
from the rest of the TDM strategies considered in the study. Consequently, it was decided to develop a 
separate model for TDM #2 (see Section 6.4.3).  The neural network with the above input nodes thus 
addresses TDM #1, #4, #5 and #6.  The above set of input nodes reflects this. 
 
The method of backpropogation is used to adjust the weights associated with the links in the network so 
that the predictive accuracy of the network is maximized.  The predictive accuracy is measured in terms 
of the percentage of cases whose output nodes are correctly classified when compared against their 
stated response.  The neural network consists of 8 output nodes, one output node for each response 
option.  When the training is complete, a certain output node (corresponding to one behavioral response 
option) is activated for each respondent.  If this activation coincides with their stated response (in the 
survey), then the case is deemed correctly classified. 
 
Three alternative neural network configurations have been trained and their predictive accuracy 
compared.  The first neural network structure has one hidden layer with 29 hidden nodes.  The second 
structure has two hidden layers with one layer having 29 nodes and the other having 28 hidden nodes.  
A third structure has three hidden nodes having 12, 10, and 8 hidden nodes respectively. Although the 
three networks offered similar predictive accuracies, the network with two hidden layers is chosen for 
further analysis considering complexity and predictive sensitivity. 
 
6.4.3  Conversion of Activation Levels to Probability Measures 
 
The output signals at the eight output neurons of the neural network indicate the “activation levels” of the 
respective neurons.  In the context of this study, the activation level of an output neuron is associated 
with the likelihood that the TDM response option corresponding to the output neuron will be chosen by 
an individual.  Activation levels are, however, not probabilities, despite the fact that they lie in the range 
between 0 and 1.  The response option generator of AMOS requires the probability associated with 
each response option be determined for each individual and for each TDM measure such that response 
options can be properly generated in the micro-simulation.  This calls for the conversion of activation 
levels to proper probability measures. 
 
A new approach is developed in this project to meet the requirement of converting neuron activation 
levels to probability measures.  The approach is based on the principle of maximum likelihood, and 
statistically estimates a conversion function such that the neural network best replicates the observed 
responses in the training data set.  



Let Sj  be the activation level of the j-th output neuron, which represents the j-th response option; and 
let Pj be the probability that the j-th response option will be chosen.  Let the conversion function for the 
j-th option be Gj.  Then, for the eight response options described in Section 6.3, 
 
Pj = Gj(S1, S2, .., S8),  j = 1, 2, .., 8 
 
where Gj is at this point an unknown function.  The objective here is to determine Gj such that resulting 
Pj’s will best agree with observed response options in the training data set (in this case the options 
selected by the survey respondents). 
 
The following two alternative functional forms are examined in the study: 

 

Pj = (Sj) / ,  j = 1, 2, .., 8 
 
and 
 

Pj = / ,   j = 1, 2, ....., 8, 
 
where   is a parameter whose value is to be determined.  By evaluating the performance of these two 
alternative functional forms using the training data set, it was determined that the latter function produces 
better likelihood function values (a likelihood function value is computed as the product of the predicted 
choice probabilities (Pj’s) for those response options that were selected by the respondents in the 
survey).  The optimum value of   was statistically determined to be 3.135.  This value is used in the 
sensitivity analysis presented later in this section, and also in the micro-simulations for the policy analysis 
of  Section 7. 
 
6.4.4  Model for TDM #2 
 
As noted earlier TDM #2, bike/pedestrian facility improvement, is qualitatively different from the other 
TDM strategies considered in this study.  The survey responses indicate that this measure is effective for 
a smaller fraction of commuters for whom riding a bicycle or walking is a realistic commuting mode.  
For these reasons, responses to TDM #2 are modeled separately. 
 
As the distribution of responses indicates (Table 6.4), responses to this scenario are concentrated on a 
fewer response options.  The input-output relationship is simpler here because the modeling effort here 
is concerned with only one TDM strategy.  Considering these factors, decision was made to model 
responses to TDM #2 using the multinomial logit model, which requires far less time for model 
development. 
 



Based on the analysis presented in Section 6.3.3, a range of explanatory variables were examined.  The 
final model selected is presented in Table 6.15.  Responses are grouped into three categories’ no 
change; switch to bicycle or walk; and others.  The model’s explanatory power is, unfortunately, limited. 
 Although the overall chi-square statistic of 610.4 (df = 9) is highly significant, this is largely due to the 
uneven distribution of responses.  Once the alternative-specific constant terms account for this 
unevenness, the remaining variations in responses that are explained by the model are small.  In fact the 
chi-square statistic associated with the variations explained by the explanatory variables is 23.3 (df = 7). 
 
 Table 6.15:  Multinomial Logit Model of Response to TDM #2 

 
 

 
No Coef. 

 
Change t 

 
Bike 
Coef. 

 
Walk t 

 
Others 
Coef. 

 
Others t  

Household Income (in $10,000) 
 

0.388 
 

1.18 
 

 
 

 
 

 
 

  
Female & picks up child during 
commute 

 
0.147 

 
0.36 

 
 

 
 

 
 

 
 

 
Makes stops during commute 

 
0.134 

 
0.61 

 
 

 
 

 
 

 
  

Constant 
 

1.478 
 

3.64 
 

 
 

 
 

 
 

  
Commute distance (10 mi.) 

 
 

 
 

 
-0.547 

 
-3.53 

 
 

 
  

Age between 19 and 29 
 

 
 

 
 

0.306 
 

0.77 
 

 
 

  
Age between 30 and 39 

 
 

 
 

 
0.510 

 
1.72 

 
 

 
  

Male 
 

 
 

 
 

0.465 
 

1.56 
 

 
 

  
Constant 

 
 

 
 

 
 

 
 

 
-0.636 

 
-1.81  

N 
 

476 
 

 
 

41 
 

 
 

65 
 

  
L(0) = -640.5,  L(C) = -347.0,  L(_\f "Symbol" \s 10) = -335.3 

 
6.4.5  Sensitivity Analysis 
 
The sensitivity of behavioral responses to TDM measures is examined in this section by conducting a 
sensitivity analysis.  The neural network is applied to the sample respondents of the survey.  In the 
sensitivity analysis, a parameter characterizing a TDM measure is incrementally changed.  The analysis is 
performed as follows: the 36 input variables (see Section 6.4.2) are prepared to represent the 
characteristics of the respondent, his/her household and travel pattern, as well as the TDM measure; 
output neuron activation levels are evaluated by the neural network and converted to probabilities; 
sample-wide averages of response probabilities are computed; and behavioral sensitivity to the TDM 
measure is assessed in terms of the sample-wide average probabilities of the respective response 
options, in particular, “No Change.”  
 
Parking Pricing (TDM #1) 
 
The level of  parking surcharge is varied from $0 (no charge) to $8 per day (the differential pricing 
between downtown areas and suburbs is not applied in this sensitivity analysis).  Figure 6.1 shows 



averages of response option choice probabilities as calculated by the neural network and the conversion 
function described above.  All respondents, including non-SOV commuters, are included in this analysis 
as the neural network is specified to include all types of commuters. 
 
At the pricing level of $0, the neural network indicates that on average 68.1% of individuals will make 
“no change.” The probability decreases by 16.6% to 0.568 with a parking charge of $8.  Theoretically, 
one may argue that the probability of “no change” with no parking charge should be 1 as no charge 
implies no TDM.  On the other hand, one may argue that behavioral responses are always probabilistic 
and cannot have a 100% probability associated with them, and that the neural network is providing 
probabilities that are associated with the randomness in responses even at the pricing level of $0. 

 
Changing commute mode is the second most frequent response next to “no change.”  The neural 
network indicates the probability of this option at no parking change to be 0.185 (again, one may take 
on the view that this probability at no TDM should be 0).  This increases by 34.5% to 0.249 at $8.  
With the charge increasing from $0 to $1, the probability increases from 0.185 to 0.196, a marginal 
increase of 5.56% in relative terms.  The choice probability continues to increase while the relative rate 

 



of increase declines as the parking charge increases.  The relative increase is 3.28% with the parking 
change increase from $7 to $8. 
Other response options, “change departure time,” “work at home,” and “other,” have similar initial and 
final probabilities.  Their initial probabilities at $0 are 0.0434, 0.0448 and 0.0453, and the final 
probabilities at $8 are 0.0606, 0.0617 and 0.0601, respectively.  The relative increases in choice 
probabilities that correspond to a charge increase from $0 to $1 are 9.63%, 8.15% and 4.17% for 
these three response options, respectively (Figure 6.2).  Corresponding values for a charge increase 
from $1 to $2 are 3.76%, 3.75% and 3.75% for the three options respectively.  The relative increase 
become uniform rapidly across the response options.  For a change increase from $7 and $8, the 
relative increase is 3.29% for the three response options. 

 
Comparing the above neural network results and tabulations of survey responses presented earlier (e.g., 
Table 6.4) reveals that the results obtained from the neural network runs do not necessarily agree with 
the distributions obtained from the survey.  This is in part due to the fact that different levels of TDM 
parameters are applied to different respondents in the survey, while in the sensitivity analysis one single 
parameter value is applied to all respondents at a time.  Yet there are cases where critical discrepancies 
exist.  For example, the average probability for “no change” obtained by the neural network with a 
parking charge of $0 (no TDM), 0.681, is less than the relative frequency of 70%, obtained from the 
survey for parking charge (TDM #1) with randomized levels of parking charges ranging from $1 to $8.  
Because the neural network uses for its computation the very sample of respondents which came from 
the survey, theoretically speaking the neural network result with no charge should not exceed that from 
the survey for this option of “no change.”  Likewise, the neural-network-based probabilities of the 

 



response options, “change departure time” and “work at home” at a parking charge of $0, both exceed 
those obtained from the survey (0.0434 vs. 1% for the former option and 0.0448 vs. 2% for the latter). 
 This of course should not happen from theoretical points of view.  These inconsistencies presumably 
stem from the fact that the neural network used here is formulated for multiple TDM measures (TDM 
#1, #4, #5 and #6).  It is anticipated that this problem will be resolved by developing a neural network 
which is dedicated for each TDM measure. 
 
6.5  Implementation of AMOS with MWCOG Databases 
 
This section discusses the implementation of AMOS for the MWCOG.  First, a brief overview of how 
various MWCOG databases are used within AMOS is provided.  This is followed by a description of 
the MWCOG survey sub-sample extracted for AMOS implementation. 
 
6.5.1  MWCOG Data File Access 
 
AMOS is being implemented in the MWCOG study area using the MWCOG traffic analysis zone 
(TAZ) system and zone-to-zone network skim tree travel time matrices by travel mode.  AMOS 
therefore has the level of geographical resolution that equals that of the MWCOG's TAZ system.  
Network skim data are available for: drive alone or low-occupancy vehicles (SOV), high-occupancy 
vehicles, public transit with walk access, and public transit with auto access.  The travel times for bicycle 
and walk modes were not contained in the original MWCOG network file; therefore, travel times for 
these modes were derived based on assumed average travel speeds by these modes. The 
implementation effort thus utilizes as much spatial and modal information as available from the MWCOG 
data base. The spatial and temporal resolution of micro-simulation results can be refined in the future by 
adopting the entire data base available from the 1994 MWCOG survey, and further by generating 
synthetic households distributed over the study area. 
 
The limited size of the sample of households at 158 and related commute trips at 98 has not allowed a 
rigorous evaluation of TCMs as anticipated. When combined with the fact that limited resources 
constrained the scope of  the AMOS survey to the collection of data essential in determining the 
necessary commuter attributes and basic TDM responsiveness, several AMOS research issues remain 
unresolved.  Despite efforts to proceed with the originally intended analyses to fully validate the 
usefulness of AMOS as a practical tool for public policy analysts and transportation planners, the results 
have proven to be deficient in some instances. For instance, limited AMOS survey scope and 
MWCOG sample trip data has: 
 
• Not allowed meaningful measurement of distributive effects across travel market segments and 

socioeconomic groups. 
• Prevented implementation of meaningful analyses of  air emissions from personal vehicles. 
 
Four MWCOG data files are used in the implementation.   Figure 6.3 indicates the files, their contents, 
and where in the AMOS prototype the data are used. 
 



These files are accessed in the Baseline Activity-Travel Pattern Analyzer, TDM Response Option 
Generator, and Activity-Travel Pattern Modifier. 

 
File Access in Baseline Activity-Travel Pattern Analyzer: Daily trip records from the 1994 
MWCOG survey are read person by person in this module.  As noted earlier, the Analyzer checks the 
consistency and completeness of the trip records and determines whether or not the person falls in the 
target group of analysis.  The network file is accessed to supplement, when possible, missing travel time 
information. 
 
File Access in TDM Response Option Generator: The person and household files are accessed in 
Generator to prepare the set of input variables that feed into the neural network.  Along with this, the 
Generator accesses the file prepared by the Analyzer that contains indicators of activity-travel pattern 
characteristics. 
 
File Access in Activity-Travel Pattern Modifier: The trip file and network file are accessed by the 
Modifier.  Travel time information from the network file is used when a mode change takes place, or 
trips with new origin and destination emerge due to re-sequencing and re-linking of activities ("re-
linking" refers to the re-grouping of trips into home-based trip chains while retaining the same sequence 
of out-of-home activities.  Re-sequencing, on the other hand, implies changing the sequence of out-of-
home activities).  For example, consider the sequence of stops, h - i - h - j - h, where h denotes the 
home base and i and j are non-home destinations.  In this case, destinations i and j are visited in two 
separate trip chains each containing one stop.  Suppose this is re-linked as h - i - j - h.  Namely, i and j 
are now visited in one trip chain which contains two stops.  In this case, the trip between i and j is a trip 
with a new combination of origin and destination. 
 

 



The modifier goes through the trip records for each sample person and changes their attributes as 
necessary.  With re-sequencing and re-linking, the number of trips itself may change.  In any case, the 
same set of information as in the original MWCOG trip file is available in the modified trip records 
produced by the modifier as its output. 
 
6.5.2  Initial AMOS Assumptions 
 
In addition to the above procedures, there are many assumptions introduced into the 
prototype, especially in the Modifier.  Many of them are initial simplifying assumptions which will be 
eventually eliminated as AMOS becomes more complete.  Some arise from the fact that AMOS is at 
this stage conceived as a short-term policy analysis tool.  Yet others represent theoretical relationships 
that are believed to exist in activity-travel behavior.  These assumptions are summarized in Table 6.16.  
In addition, the various constraints summarized in Section 5 are also incorporated into the prototype. 
 
 Table 6.16:  List of Initial Assumptions in the AMOS Prototype  
 
Initial Assumptions 
 
• The activity-travel pattern of one person can be analyzed at a time while ignoring inter-personal 

interaction. 
• The activity-travel pattern over one day can be analyzed at a time while ignoring activity 

scheduling over a longer time span. 
• Out-of-home activity durations are fixed. 
• The number of out-of-home stops is fixed (no new activities, or foregone activities). 
• No intermediate stops along commuter trips can be made when a person rideshares to 

commutes. 
• When out-of-home activities engaged before (after) work are re-sequenced, they will be placed 

before (after) work. 
• Destination locations are fixed. 
• HOV travel time equals SOV travel time unless otherwise specified by TDM scenarios. 
 
Coupling Constraints 
 
• Work starting and ending times are fixed. 
• Store houses are 10:00 AM to 9:00 PM for comparison shopping and all day for grocery 

shopping. 
• Business hours for offices and businesses are 9:00 AM to 5:00 PM. 
 
Short-Term Policy Analysis 
 
• Home and work locations are fixed. 
• Household vehicle ownership is fixed. 
• No change in work schedule policies. 

 



6.5.3  Overview of MWCOG Survey Sample 
 
MWCOG provided the RDC, Inc. research team with a small sample of 89 households from the 1994 
MWCOG Household Travel Survey.  For these 89 households, trip information is geo-coded by TAZ 
(transportation analysis zone).  In addition, information is available for 191 persons and 686 trips 
reported by the respondents in the trip diaries. 
 
Detailed household, person, travel, and commute characteristics are provided for this sample in RDC, 
Inc. (1995b).  It was found that 158 persons (of the 191) reported at least one trip on the travel diary 
day.  Of these 158 persons, 98 reported at least one work trip.  The sub-sample of 98 commuters was 
extracted for conducting a TDM response analysis.  This is because the current AMOS prototype is 
applicable only to commuters.  As such, a data set for these 98 commuters consisting of 36 variables 
(each one corresponding to an input node of the neural network) was prepared. 
 
A few person-based descriptive statistics are provided below for the 36 variables used in the neural 
network analysis.  The age distribution of the sample is shown in Figure 6.4.   

 
Only one person is less than 15 years of age.  Five cases had missing age information.  As this sample 
consists of only commuters, the age distribution is as expected.  Almost 90% of the sample is drawn 
from the 16 to 65 year age groups.  The average age for the sample is found to be about 38 years.  As 
far as the sex ratio is concerned, the 98 commuters were distributed as 56 males and 42 females.   
 
Figure 6.5 shows the distribution of household vehicle ownership for the 98 commuters.  More than 
50% of the sample resides in households with 2 vehicles.  Only two persons reside in a household that 
owns no vehicle.  An almost equal number of persons reside in households with one and three vehicles.  
However, it should be noted that there are more households that own one vehicle than those that own 
three vehicles. 

 



Figure 6.6 shows the distribution of the sample by income category. 

 
 

 
As expected the income variable had a substantial amount of missing information.  Eighteen persons 
reside in households that refused to provide income data.  The figure below represents the distribution 
for the remaining 80 commuters.  Only one household (having two persons) reports an income over 
$150,000. 
 
An examination of the distribution of the number of commuters in the household shows that they are 
predominantly one- or two-worker households (Figure 6.7).  On the other hand, the household size 

 

 



distribution is found to be more uniform signifying the potential presence of young non-commuters in the 
households. 

 
The distribution by type of residence is shown in Figure 6.8. 

 
Of the 98 commuters, 80 live in Single Family dwelling units while 16 reside in apartments or 
condominiums. 
 
Figure 6.9 shows the distribution of commute times for the 98 commuters.  The commute time is 
measured here by the time taken to reach the work destination.  As such, time spent at stops on the way 

 

 



to work may be included for those who trip chain on the journey to work.  The mean commute time for 
the sample is found to be about 30 minutes with the distribution slightly skewed in favor of travel times 
below the mean value. 
 

 
The next figure (Figure 6.10) shows the distribution of the sample by work mode. 

 
About 60% of the sample commutes by SOV, while about 15% commutes by car or van pool modes.  
Interestingly, the percentage of commuters using walk mode at 17% is second only to SOV.  In this 
commuter sample, only 2% of the sample uses any form of transit. 

 

 



 
Finally, Figure 6.11 provides an indication of the level of trip chaining that is undertaken as part of the 
journey to or from work. 

 
The number of persons making stops on the way to work and the number making stops on the way 
back from work are shown in the figure.  The distributions are rather similar; noteworthy is the fact that 
about 45% of the sample makes at least one stop either on the way to or from work. 
 
This section is intended to provide information regarding the sample of commuters being used to predict 
TDM response distributions in the MWCOG region.  As the MWCOG survey sample size is too small 
to develop weights, sample-based results will be pivoted off of regional control totals to obtain first-cut 
region wide estimates of TDM response distributions and TDM impacts. 
 
6.6  Examples of AMOS Application to Commuters in MWCOG Sample 
 
The TDM response option generator provides a first level basic response that an individual may exhibit 
when a TDM is introduced.  However, this response, by itself, does not provide the necessary 
information for computing changes in travel characteristics such as trip frequencies by mode and 
purpose, cold and hot starts, travel durations, vehicle miles traveled, etc.  In order to obtain such 
statistics, the basic response option must be used further to deduce secondary and tertiary changes that 
may be brought about in an individuals’ activity-travel pattern.   
 
The activity-travel pattern modifier uses a rule-based algorithm to determine alternative, but feasible 
activity-travel patterns that an individual may adopt in the new travel environment.  In applying AMOS 
to the MWCOG survey sample, the activity-travel pattern modifier was applied to the 98 commuters’ 
baseline travel patterns to obtain modified activity-travel patterns that may occur as a consequence of 
the basic response.   
 

 



This section summarizes results for five representative cases drawn from the sample.  For each case, the 
baseline travel pattern and the basic response option for TDM #5 (Congestion Pricing with Travel Time 
Reduction), the modified activity-travel pattern, and the changes in travel indicators are discussed. 
 
6.6.1  Baseline Characteristics and TDM Response Option 
 
The five cases chosen for presentation in this report are all commuters who differ in their socio-
economic characteristics, trip chaining and stop patterns, and commute lengths.  This section first 
describes baseline characteristics and then provides the basic TDM response option that was produced 
by the TDM response option generator for each of the five cases.  For purposes of this analysis, the 
AM peak period is defined as 7 am to 9 am and the PM peak period as 4 pm to 6 pm.   
 
Case 1: The baseline travel characteristics of the first case are shown in Table 6.17.   
 
 Table 6.17:  Baseline Travel Pattern for Case 1 
 Household ID: 10094324; Person ID: 2 

 
Trip No. 

 
Origin  
TAZ 

 
Destn  
TAZ 

 
Origin  
Locn 

 
Destn  
Locn 

 
Depart  
Time 

 
Arrive 
Time 

 
Mode 

 
Driver/ 

Passenger  
1 

 
1236 

 
1238 

 
Home 

 
Work 

 
8:45 

 
9:01 

 
Walk 

 
Not Appl  

2 
 

1238 
 

1236 
 

Work 
 

Home 
 

9:45 
 
10:01 

 
Walk 

 
Not Appl  

3 
 

1236 
 

1236 
 

Home 
 
Recreatn 

 
10:15 

 
10:30 

 
Auto 

 
Passenger  

4 
 

1236 
 

1246 
 
Recreatn 

 
Shop 

 
13:00 

 
13:15 

 
Auto 

 
Passenger  

5 
 

1246 
 

1236 
 

Shop 
 

Home 
 
14:15 

 
14:30 

 
Auto 

 
Passenger  

6 
 

1236 
 

1236 
 

Home 
 

Work 
 
17:00 

 
17:10 

 
Walk 

 
Not Appl  

7 
 

1236 
 

1236 
 

Work 
 

Home 
 
18:15 

 
18:25 

 
Walk 

 
Not Appl 

 
 Summary Characteristics  

Age: 79 
 

Auto Psgr Trips: 
 

3 
 

Work Trips: 
 

2 
 

Peak Trips:  
Sex: Male 

 
Walk Trips: 

 
4 

 
Home Trips: 

 
3 

 
Total Trips:  

Commute Mode:  Walk 
 
Case 1 is a 79 year old male who walks 16 minutes (one-way) to work.  He also makes three trips as 
an auto passenger.  Even though some of his trips are in the peak period, he is not affected by the 
congestion pricing as he does not use the automobile during those periods. 
 
Case 2: The baseline travel characteristics of the second case are shown in Table 6.18.  The person is a 
33 year old female who uses the bus and walk modes to get to work.  She makes four trips during the 
peak periods, three by walk and one by bus.  Congestion pricing does not affect this person also, as she 
does not commute by automobile. 
 



 Table 6.18:  Baseline Travel Pattern for Case 2 
 Household ID: 10168870; Person ID: 1 

 
Trip No. 

 
Origin  
TAZ 

 
Destn  
TAZ 

 
Origin  
Locn 

 
Destn  
Locn 

 
Depart  
Time 

 
Arrive  
Time 

 
Mode 

 
Driver/ 
Passenger  

1 
 
651  

 
652  

 
Home 

 
Chng Mod 

 
6:45 

 
6:55 

 
Bus 

 
Not Appl  

2 
 
652  

 
24   

 
Chng Mod 

 
Work 

 
7:25 

 
7:35 

 
Walk 

 
Not Appl  

3 
 
24   

 
24   

 
Work 

 
Chng Mod 

 
15:55 

 
16:05 

 
Walk 

 
Not Appl  

4 
 
24   

 
164  

 
Chng Mod 

 
Chng Mod 

 
16:15 

 
16:20 

 
Walk 

 
Not Appl  

5 
 
164  

 
651 

 
Chng Mod 

 
Home 

 
16:20 

 
16:55 

 
Bus 

 
Not Appl 

 
 Summary Characteristics  

Age: 33 
 
Auto Psgr Trips: 

 
0 

 
Work Trips: 

 
1 

 
Peak Trip Legs:  4  

Sex: Female 
 
Walk Trips: 

 
3 

 
Home Trips: 

 
1 

 
Total Trip Legs:  5  

Commute Mode:  Bus/Walk 
 
 

 
 

 
 

 
 

 
 

 
Case 3: The baseline travel characteristics of the third case are shown in Table 6.19.   
 
 Table 6.19:  Baseline Travel Pattern for Case 3 
 Household ID: 10004125; Person ID: 2 

 
Trip No. 

 
Origin  
TAZ 

 
Destn  
TAZ 

 
Origin  
Locn 

 
Destn  
Locn 

 
Depart  
Time 

 
Arrive  
Time 

 
Mode 

 
Driver/ 
Passenger  

1 
 
1193  

 
1219 

 
Home 

 
Work 

 
7:00 

 
7:20 

 
Auto 

 
Driver  

2 
 
1219 

 
1193 

 
Work     

 
Home 

 
15:42 

 
16:08 

 
Auto 

 
Driver 

 
 Summary Characteristics  

Age: 51 
 
Auto Drvr Trips: 

 
2 

 
Work Trips: 

 
1 

 
Peak Trips: 

 
2  

Sex: Female 
 
Commute Mode: 

 
Auto Driver 

 
Home Trips: 

 
1 

 
Total Trips: 

 
2 

 
Case 3 is a 51 year old female who makes a total of two trips.  The morning trip occurs during the AM 
peak period.  The person commutes by driving alone to work and is therefore affected by the 
congestion pricing.   
 
Case 4: The baseline travel characteristics of the fourth case are shown in Table 6.20.  Case 4 is a 38 
year old male who also commutes by driving alone to work during the peak periods.  He makes three 
trips as the driver and another three trips as a passenger. 
 
 Table 6.20:  Baseline Travel Pattern for Case 4 
 Household ID: 10196665; Person ID: 2          



Trip No. Origin  
TAZ 

Destn  
TAZ 

Origin  
Locn 

Destn  
Locn 

Depart  
Time 

Arrive  
Time 

Mode Driver/ 
Passenger  

1 
 
217  

 
7   

 
Home 

 
Work 

 
8:18 

 
8:38 

 
Auto 

 
Driver  

2 
 
7   

 
217   

 
Work     

 
Home 

 
17:30 

 
17:50 

 
Auto 

 
Driver  

3 
 
217 

 
209 

 
Home 

 
Social 

 
18:50 

 
19:00 

 
Auto 

 
Passenger   

4 
 
209 

 
217 

 
Social 

 
Home 

 
21:45 

 
21:55 

 
Auto 

 
Passenger  

5 
 
217 

 
110 

 
Home 

 
Chld Care 

 
22:00 

 
22:12 

 
Auto 

 
Passenger  

6 
 
110 

 
217 

 
Chld Care 

 
Home 

 
22:13 

 
22:25 

 
Auto 

 
Driver 

 
 Summary Characteristics  

Age: 38 
 
Auto Psgr Trips: 

 
3 

 
Work Trips: 

 
1 

 
Peak Trips:  

Sex: Male 
 
Auto Drvr Trips: 

 
3 

 
Home Trips: 

 
3 

 
Total Trips:  

Commute Mode:  Auto Driver 
 
Case 5: The baseline travel characteristics of the fifth case are shown in Table 6.21.  Finally, case 5 
pertains to that of a 70 year old male who makes only two trips.  This person does not work full time; 
he commutes by automobile, but during off-peak periods only.  As such, this person is not affected by 
the congestion pricing. 
 
 Table 6.21:  Baseline Travel Pattern for Case 5 
 Household ID: 10007300; Person ID: 2  

Trip No. 
 
Origin  
TAZ 

 
Destn  
TAZ 

 
Origin  
Locn 

 
Destn  
Locn 

 
Depart  
Time 

 
Arrive  
Time 

 
Mode 

 
Driver/ 
Passenger  

1 
 
338  

 
11 

 
Home 

 
Work 

 
10:00 

 
10:25 

 
Auto 

 
Passenger  

2 
 
11 

 
338 

 
Work 

 
Home    

 
13:15 

 
13:45 

 
Auto 

 
Driver 

 
 Summary Characteristics  

Age: 70 
 
Auto Drvr Trips: 1 

 
Work Trips: 

 
1 

 
Peak Trips: 

 
0  

Sex: Male 
 
Auto Psgr Trips: 1 

 
Home Trips: 

 
1 

 
Total Trips: 

 
2  

Commute Mode: Auto Driver 
 
Given these baseline travel characteristics and other input nodes, the TDM response option generator 
predicted the TDM response option that would be chosen by each of these cases.  The results are 
presented in Table 6.22.   
 
 Table 6.22:  Predicted TDM Response Option for Five Cases  

Case No. 
 
Household ID 

 
Person ID 

 
TDM Response 

 
Remarks  

1 
 
10094324 

 
2 

 
No Change 

 
Commute mode is walk. 



 
2 

 
10168870 

 
1 

 
No Change 

 
Commute mode is bus/walk.  

3 
 
10004125 

 
2 

 
Change Dep Time 

 
Commute mode is auto driver with 
work trip in peak period.  

4 
 
10196665 

 
2 

 
Change Dep Time 

 
Commute mode is auto driver with 
work trip in peak period.  

5 
 
10007300 

 
2 

 
No Change 

 
Commute mode is auto driver but no 
trip is in peak period. 

 
Among the five cases, two respond with a change in their travel behavior.  Cases 3 and 4 commute by 
automobile as a driver during the peak period.  As congestion pricing is levied during that time, the 
predicted response of change departure time is consistent with the TDM under investigation.  Cases 1 
and 2 commute by walk and bus (alternative modes) and are therefore not affected by congestion 
pricing; similarly case 5, though commuting by automobile, does so during the off-peak period.  As 
such, cases 1, 2, and 5 are predicted to exhibit no change in their travel choices. 
 
6.6.2  Modified Activity-Travel Patterns 
 
After obtaining the basic TDM response, a modified activity-travel pattern that incorporates possible 
secondary and tertiary changes can be generated.  This is done by the activity-travel pattern modifier; 
the modified patterns are then evaluated using a time-use utility measure to identify the alternative pattern 
that is most likely to be adopted by the traveler.  This section provides a description of the modified 
travel patterns. 
 
Case 1: The modified travel pattern for the first case is shown in Table 6.23.   
 
 Table 6.23:  Modified Travel Pattern for Case 1 
 Household ID: 10094324; Person ID: 2 

 
Trip No. 

 
Origin  
TAZ 

 
Destn  
TAZ 

 
Origin  
Locn 

 
Destn  
Locn 

 
Depart  
Time 

 
Arrive  
Time 

 
Mode 

 
Driver/ 
Passenger  

1 
 
1236 

 
1238 

 
Home 

 
Work 

 
8:45 

 
9:01 

 
Walk 

 
Not Appl  

2 
 
1238 

 
1236 

 
Work 

 
Home 

 
9:45 

 
10:01 

 
Walk 

 
Not Appl  

3 
 
1236 

 
1236 

 
Home 

 
Recreatn 

 
10:15 

 
10:30 

 
Auto 

 
Passenger  

4 
 
1236 

 
1246 

 
Recreatn 

 
Shop 

 
13:00 

 
13:15 

 
Auto 

 
Passenger  

5 
 
1246 

 
1236 

 
Shop 

 
Home 

 
14:15 

 
14:30 

 
Auto 

 
Passenger  

6 
 
1236 

 
1236 

 
Home 

 
Work 

 
17:00 

 
17:10 

 
Walk 

 
Not Appl  

7 
 
1236 

 
1236 

 
Work 

 
Home 

 
18:15 

 
18:25 

 
Walk 

 
Not Appl 

 
 Summary Characteristics  

Age: 79 
 
Auto Psgr Trips: 

 
3 

 
Work Trips: 

 
2 

 
Peak Trips: 

 
2        



Sex: Male Walk Trips: 4 Home Trips: 3 Total Trips: 7  
Commute Mode:  Walk 

 
The modified pattern is consistent with the TDM response option generated for this person.  This 
person shows no change in travel behavior even after the introduction of congestion pricing.  This is 
because he is not affected by the congestion pricing as his commute mode is walk. 
 
Case 2: The modified travel characteristics of the second case are shown in Table 6.24. Congestion 
pricing does not affect this person also, as she does not commute by automobile.  As such, the modified 
travel pattern provided by the activity-travel pattern modifier is the same as the baseline pattern. 
 
 Table 6.24:  Modified Travel Pattern for Case 2 
 Household ID: 10168870; Person ID: 1 

 
Trip No. 

 
Origin  
TAZ 

 
Destn  
TAZ 

 
Origin  
Locn 

 
Destn  
Locn 

 
Depart  
Time 

 
Arrive  
Time 

 
Mode 

 
Driver/ 
Passenger  

1 
 
651  

 
652  

 
Home 

 
ChngMod 

 
6:45 

 
6:55 

 
Bus 

 
Not Appl  

2 
 
652  

 
24   

 
Chng Mod 

 
Work 

 
7:25 

 
7:35 

 
Walk 

 
Not Appl  

3 
 
24   

 
24   

 
Work 

 
Chng Mod 

 
15:55 

 
16:05 

 
Walk 

 
Not Appl  

4 
 
24   

 
164  

 
Chng Mod 

 
Chng Mod 

 
16:15 

 
16:20 

 
Walk 

 
Not Appl  

5 
 
164  

 
651 

 
Chng Mod 

 
Home 

 
16:20 

 
16:55 

 
Bus 

 
Not Appl 

 
 Summary Characteristics  

Age: 33 
 
Auto Psgr Trips: 

 
0 

 
Work Trips: 

 
1 

 
Peak Trips:  

Sex: Female 
 
Walk Trips: 

 
3 

 
Home Trips: 

 
1 

 
Total Trips:  

Commute Mode:  Bus/Walk 
 
Case 3:  The modified travel characteristics of the third case are shown in Table 6.25.  In this case, the 
person is affected by the TDM.  As the person travels during the peak periods, the person is subject to 
congestion pricing.  As a result, the activity-travel pattern modifier provided an alternative pattern where 
the person reaches the work place before the onset of the peak period (7-9 am).  As the person now 
reaches work 20 minutes earlier than in the baseline pattern, the person also leaves work 20 minutes 
earlier and arrives home 20 minutes earlier.  As such, the total in-home time is not changed.  Moreover, 
the PM peak period is also avoided.  For this person, while total trip generation remains constant, the 
peak period trip generation drops from 2 to 0. 
 
 Table 6.25:  Modified Travel Pattern for Case 3 
 Household ID: 10004125; Person ID: 2 

 
Trip No. 

 
Origin  
TAZ 

 
Destn  
TAZ 

 
Origin  
Locn 

 
Destn  
Locn 

 
Depart  
Time 

 
Arrive  
Time 

 
Mode 

 
Driver/ 
Passenger          



1 1193  1219 Home Work 6:40 7:00 Auto Driver  
2 

 
1219 

 
1193 

 
Work     

 
Home 

 
15:22 

 
15:48 

 
Auto 

 
Driver 

 
 Summary Characteristics  

Age: 51 
 
Auto Drvr Trips: 

 
2 

 
Work Trips: 

 
1 

 
Peak Trips: 

 
  

Sex: Female 
 
Commute Mode: 

 
Auto Driver 

 
Home Trips: 

 
1 

 
Total Trips: 

 
2 

 
Case 4: The modified travel characteristics of the fourth case are shown in Table 6.26. 
 
 Table 6.26:  Modified Travel Pattern for Case 4 
 Household ID: 10196665; Person ID: 2 

 
Trip No. 

 
Origin  
TAZ 

 
Destn  
TAZ 

 
Origin  
Locn 

 
Destn  
Locn 

 
Depart  
Time 

 
Arrive  
Time 

 
Mode 

 
Driver/ 
Passenger  

1 
 
217  

 
7   

 
Home 

 
Work 

 
9:00 

 
9:20 

 
Auto 

 
Driver  

2 
 
7   

 
217   

 
Work     

 
Home 

 
18:12 

 
18:32 

 
Auto 

 
Driver  

3 
 
217 

 
209 

 
Home 

 
Social 

 
19:32 

 
19:42 

 
Auto 

 
Passenger   

4 
 
209 

 
217 

 
Social 

 
Home 

 
22:27 

 
22:37 

 
Auto 

 
Passenger  

5 
 
217 

 
110 

 
Home 

 
ChldCare 

 
22:42 

 
22:54 

 
Auto 

 
Passenger  

6 
 
110 

 
217 

 
ChldCare 

 
Home 

 
22:55 

 
23:07 

 
Auto 

 
Driver 

 
 Summary Characteristics  

Age: 38 
 
Auto Psgr Trips: 

 
3 

 
Work Trips: 

 
1 

 
Peak Trips:  

Sex: Male 
 
Auto Drvr Trips: 

 
3 

 
Home Trips: 

 
3 

 
Total Trips:  

Commute Mode:  Auto Driver 
 
In this case, the person made two peak period trips in the baseline travel pattern.  The person was 
subject to congestion pricing both during the AM and PM peak periods.  The activity-travel pattern 
modifier shifted both of these trips to avoid the peak periods.  The trip to work in the morning now 
commences at 9:00 am instead of 8:18 am; and the trip from work commences at 6:12 pm instead of 
5:30 pm. Here again, peak period trip generation is completely eliminated as a result of the TDM.  
 
Case 5: The modified travel characteristics of the fifth case are shown in Table 6.27.  As this person 
commutes only during off-peak periods, he is not affected by the congestion pricing.  The TDM 
response option generator predicted that he would not change his behavior; accordingly, the activity-
travel pattern modifier provided a modified travel pattern that is the same as the baseline pattern.  
 
 Table 6.27:  Modified Travel Pattern for Case 5 
 Household ID: 10007300; Person ID: 2 

 
 
Origin  

 
Destn  

 
Origin  

 
Destn  

 
Depart  

 
Arrive   

 
Driver/ 



Trip No. TAZ TAZ Locn Locn Time Time Mode Passenger  
1 

 
338  

 
11 

 
Home 

 
Work 

 
10:00 

 
10:25 

 
Auto 

 
Passenger  

2 
 
11 

 
338 

 
Work 

 
Home    

 
13:15 

 
13:45 

 
Auto 

 
Driver 

 
 Summary Characteristics  

Age: 70 
 
Auto Drvr Trips: 1 

 
Work Trips: 

 
1 

 
Peak Trips: 

 
0  

Sex: Male 
 
Auto Psgr Trips: 1 

 
Home Trips: 

 
1 

 
Total Trips: 

 
2  

Commute Mode: Auto Driver 
 
This section has provided an illustration of how the activity-travel pattern modifier, in conjunction with 
the TDM response option generator, provides alternative activity-travel patterns that will be adopted as 
a result of a change in the travel environment.  The modified patterns can be compared against the 
baseline patterns to obtain measures of changes in travel characteristics.  The next section briefly 
describes such a comparison. 
 
6.6.3  Changes in Travel Characteristics 
 
Finally, the adopted modified activity-travel patterns together with the baseline travel patterns can be 
used to compute changes in travel indicators as a result of the introduction of a certain TDM.  In this 
section, changes in travel characteristics exhibited by each of the five cases as a result of the 
modification in travel patterns are computed and presented.  The statistics provided in this section may 
be regarded as one among the primary outputs of AMOS, namely, impacts of TDM measures on travel 
demand. 
 
For the sample cases considered here, Table 6.28 shows the changes in peak period trip generation by 
time of day and the aggregate change over all five cases. 
 
 Table 6.28.  Changes in Travel Characteristics for Five Cases 

 
Case  
No. 

 
Baseline 

AM Peak 
Trips 

 
Modified 
AM Peak 

Trips 

 
Baseline 
PM Peak 

Trips 

 
Modified 
PM Peak 

Trips 

 
Total 

Baseline 
Peak Trips 

 
Total 

Modified 
Peak Trips 

 
Change 
in Total 

Peak Trips  
1 

 
1 

 
1 

 
1 

 
1 

 
2 

 
2 

 
0  

2 
 

1 
 

1 
 

3 
 

3 
 

4 
 

4 
 

0  
3 

 
1 

 
0 

 
1 

 
0 

 
2 

 
0 

 
-2  

4 
 

1 
 

0 
 

1 
 

0 
 

2 
 

0 
 

-2  
5 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0  

Total 
 

4 
 

2 
 

6 
 

4 
 

10 
 

6 
 

-4 
 



From the table, it can be seen that AMOS provides both a disaggregate and aggregate level output of 
TDM impacts.  While the baseline patterns included a total of 10 peak period trips for all five cases, the 
modified patterns included only 6 thus reflecting a 40% reduction in peak period trip generation as a 
result of congestion pricing.  The negative sign in the last column (depicting change) signifies the 
realization of a decrease in the travel indicator. 
 
Similarly, AMOS can also provide disaggregate and aggregate measures of changes in other travel 
indicators, such as trip frequencies by purpose, trip frequencies by mode, and vehicle miles traveled, 
that are brought about by a TDM strategy or TDM.   
 
This section illustrates how AMOS may be applied to individual trip records to predict changes in travel 
demand that may occur as a result of a TDM strategy.  As a first attempt at performing a TDM policy 
analysis, AMOS was applied to commuters in the 1994 MWCOG household survey sub-sample and 
estimates of TDM impacts on sample-wide travel demand indicators were obtained.  The next section 
describes the methodology and results obtained from the policy analysis which was aimed at evaluating 
the potential effectiveness of TDM strategies in the Washington, D.C., metropolitan area.  
 
Go to Table of Contents 
 
 
Chapter 7:  Policy Analysis 
 
As an application example of the AMOS prototype described in Section 6, impacts of alternative TDM 
measures on commuters’ daily travel patterns are evaluated in this section.  The data base of this 
analysis comprises commuters from a set of sample households available from a home interview survey 
conducted by the MWCOG in 1994 and the MWCOG network travel time data files.  As noted in 
Section 6.5, trip diaries are available for this exercise from only a very small number of households from 
the MWCOG survey data.  Furthermore, only a subset of the available diaries can be used in the 
analysis because the prototype is specified only for commuters and because of missing information (e.g., 
household income).  Consequently the number of commuter diaries in the data file is extremely limited.  
Considering potential magnitudes of sampling errors associated with such a small sample, it is decided 
not to produce any estimates of regional impacts of alternative TDM measures.  For the same reason, 
the results presented in this report should not be considered to represent an assessment of the relative 
merits of the respective TDM measures. Rather, the results presented in this section should be taken as 
numerical examples which illustrate how the activity-based policy tool applies to various TDM measures 
and how it evaluates the impact of each TDM measure on daily travel patterns in their entirety.  For the 
same reason of the limited sample size, no analysis is performed by commuter segments at this stage. 
 
7.1  Evaluation Measures 
 
The examples in Section 6.6 showed in detail how a commuter’s daily itinerary is reconstructed based 
on the TDM response option predicted to be adopted by the commuter.  Changes in daily travel 
patterns are aggregated and sample-wide mean values are obtained for the following: 



 
• total number of trips per day, by mode and by purpose, 
• total travel time by mode,  
• overall modal split, 
• number of peak trips by mode and by purpose, 
• peak-period travel time, 
• peak-period modal split, 
• average number of trips per person, 
• fraction of hot starts by time of day, and 
• time utility of in-home activities.  
 
7.2.  Micro-Simulation Procedure  
 
The AMOS prototype is applied to the subsample of commuters from the MWCOG survey data to 
illustrate how AMOS can be applied to various TDM measures.  The first step of micro-simulation is to 
specify the parameters that characterize the TDM strategy being analyzed.  For TDM #1, #4, #5 and 
#6, they are: 
 
• surcharge for parking per day (in $, TDM #1) 
• parking charge per month, and amount of monthly transportation voucher (in $, TDM #4 and #6) 
• congestion charge per mile (in $), and peak travel time reduction (in %, TDM #5 and #6). 
 
Given the values of relevant parameters, the neural network is run, using also a data file that contains 
variables that define the sample commuters’ demographic, socio-economic, and travel characteristics.  
This neural network run results in a set of activation levels at the output neurons for each sample 
commuter.  These are then converted to probabilistic measures using the method described in Section 
6.4.2.   
 
A uniformly distributed random number is then generated to produce a response option for each sample 
commuter.  A random number refers to a number whose values cannot be predetermined, and which 
assumes a certain value according to a prespecified statistical distribution.  A uniformly distributed 
random number lies between 0 and 1, and assumes any value between 0 and 1 with the same 
probability.  For example, it may take on a value of 0.154 or 0.673 with exactly the same probability.  
Therefore if you draw uniform random numbers 100 times, then their values will be greater than 0.5 on 
average 50% of the time.  In this application a uniform random number is drawn and a response option 
is selected as follows. 
 
Suppose the neural network run indicates that a commuter’s choice probabilities are as shown in the left 
column of numbers below.  These probabilities are converted to cumulative probabilities as shown on 
the right column. 
  

Probabilities 
 
 

 
 

 
 

 
      



no change  0.71  0.71  
change departure time 

 
0.11 

 
 

 
0.82 

 
  

switch to transit 
 
0.06 

 
 

 
0.88 

 
  

switch to car/vanpool 
 
0.04 

 
 

 
0.92 

 
  

switch to bicycle 
 
0.05 

 
 

 
0.97 

 
  

switch to walk 
 
 

 
0.02 

 
 

 
0.99  

work at home 
 
 

 
0.01 

 
 

 
1.00 

 
In this illustration, a uniform random number is then drawn and that response option, whose cumulative 
probability value is larger than, and closest to, the value of the random number.  For example, suppose 
the random number drawn is 0.76.  Then “change departure time” will be selected.  Likewise a random 
number value of 0.95 would produce “switch to bicycle” and 0.45 “no change.”  This procedure will 
generate response options according to the choice probabilities determined by the neural network. 
 
Given a response option thus selected, the sample commuter’s daily itinerary will be adjusted by the 
modifier. 
 
In this simulation experiment, the evaluation routine comprises a simple rule that when the total travel 
time increases more than 60 minutes then the modified travel pattern is regarded as infeasible.  This is 
largely to focus the effort on developing more realistic modifier routines. 
 
The simulation is repeated for the same TDM strategy by generating different sets of random numbers, 
which will probabilistically generate different sets of response options from the sample of  commuters.  
Summary statistics are generated by the reporting routine, and presented in the next section.   
 
7.3  Results of AMOS Prototype Simulation Runs  
 
The TDM strategies and parameter values examined here are summarized as follows: 
 
• TDM #1, parking pricing:  parking surcharge of $8.00 per day, 
• TDM #4, parking pricing with employer-paid voucher:  parking charge of $80 per month and a 

commuter voucher of $60, 
• TDM #5, congestion pricing:  congestion charge of  $0.50 per mile, travel time reduction by 30%, 

and 
• TDM #6, a synergy combination of TDM #4 and TDM #5: parking charge of $80 per month,  

commuter voucher of $60, and congestion charge of $0.50 per mile. 
 
In the rest of this section, the baseline case is first examined, then simulation results are reviewed for 
each of these TDM strategies.  A total of 20 simulation runs were performed for each TDM measure. 
 
7.3.1  Baseline Case 



 
The distribution of trip purposes (work vs. non-work), travel mode (auto-driver, auto-passenger, 
other), mean trip duration by mode, percent of hot starts, average number of trips per person, and in-
home time utility are summarized in Table 7.1 for AM peak, PM peak and off-peak periods.  Slightly 
over 60% of the trips are work trips (including trips from work to home), with higher fractions during 
the morning and afternoon peaks.  Overall over three-quarters of the trips are made by auto.  The large 
fraction of trips by “other” mode in the afternoon peak period represents walk trips made in this period 
by this sample of commuters. 
 
 Table 7.1:  Baseline Travel Characteristics  

 
 

Total 
 

AM Peak 
 

PM Peak 
 

Off-Peak  
TRIP PURPOSE  
     Work 

 
60.4% 

 
75.7% 

 
68.6% 

 
49.0%  

     Non-Work 
 

39.6% 
 

24.3% 
 

31.4% 
 

51.0%  
TRAVEL MODE  
     Auto - Driver 

 
59.6% 

 
76.8% 

 
54.0% 

 
57.1%  

     Auto - Passenger 
 

17.9% 
 

12.2% 
 

19.6% 
 

21.1%  
     Other 

 
22.5% 

 
11.0% 

 
27.5% 

 
21.8%  

TRIP DURATION (min.)  
     Total 

 
23.7 

 
32.5 

 
27.3 

 
17.1  

     Auto-Driver 
 

23.8 
 

30.8 
 

29.7 
 

30.0  
     Auto-Passenger 

 
29.1 

 
44.5 

 
47.8 

 
18.3  

     Other 
 

19.2 
 

31.0 
 

30.8 
 

18.6  
HOT STARTS (%) 

 
14.3% 

 
12.5% 

 
1.% 

 
21.6%  

PERCENT OF TRIPS 
 

100% 
 

29.3% 
 

21.8% 
 

48.9%  
TRIPS PER PERSON 

 
3.33 

 
 

 
 

 
  

IN-HOME TIME UTILITY     
 

2.59 
 

 
 

 
 

 
 
7.3.2  Parking Pricing (TDM #1) 
 
Results of simulation runs with TDM #1, parking pricing with a surcharge of $8 a day, are summarized 
in Table 7.2.  The most notable change is in modal split.  The fraction of auto driver trips decreased 
from 59.6% in the baseline case to 55.2%, while auto passenger trips increased from 17.9% to 20.5%. 
 Similar shifts can be observed for both peak and off-peak periods. 
 
 Table 7.2:  AMOS Simulation Results: Parking Pricing (TDM #1)  

 
 

Total 
 
AM Peak 

 
PM Peak 

 
Off-Peak  

TRIP PURPOSE      



     Work 61.2% 73.1% 66.2% 52.3%  
     Non-Work 

 
38.8% 

 
26.9% 

 
33.8% 

 
47.7%  

TRAVEL MODE  
     Auto - Driver 

 
55.2% 

 
68.8% 

 
47.3% 

 
51.1%  

     Auto - Passenger 
 

20.5% 
 

17.2% 
 

16.9% 
 

24.0%  
     Other 

 
24.3% 

 
14.0% 

 
35.8% 

 
24.9%  

TRIP DURATION (min.)  
     Total 

 
24.0 

 
33.0 

 
26.4 

 
17.9  

     Auto-Driver 
 

26.4 
 

34.9 
 

30.8 
 

18.1  
     Auto-Passenger 

 
26.1 

 
36.4 

 
39.4 

 
17.7  

     Other 
 

16.8 
 

19.2 
 

14.5 
 

17.6  
HOT STARTS (%) 

 
11.1% 

 
13.3% 

 
2.0% 

 
13.9%  

PERCENT OF TRIPS 
 

100% 
 

28.0% 
 

22.3% 
 

49.7%  
TRIPS PER PERSON 

 
3.43 

 
 

 
 

 
  

IN-HOME TIME UTILITY     
 

2.73 
 

 
 

 
 

 
 
The overall average trip duration (in min.) shows virtually no changes between the two cases.  
Importantly, the mean driver trip duration increased from 23.8 min. to 26.4 min.  This suggests that 
long-distance commuters tended to remain solo drivers while shorter distance travelers adopted other 
options.  Mean passenger trip durations, on the other hand, decreased with the TDM.  The differences 
are more noticeable for both morning and afternoon peak periods; the mean morning peak duration 
decreased from 44.5 min. to 36.4 min., and the afternoon peak duration from 47.8 min. to 39.4 min.  It 
appears that long distance commuters who shared ride tended to switch to other options with the 
parking pricing. 
 
The distribution of trips across morning peak, afternoon peak and off-peak shows only minor changes.  
The fraction of morning peak trips decreased slightly from 29.3% to 28.0%, while that of afternoon 
peak trips increased from 21.8% to 22.3%. 
 
The fraction of total hot starts shows a decrease. This is due to a decrease in the off-peak period. There 
are slightly more hot starts during the morning and afternoon peak periods, presumably reflecting more 
frequent linked trips in these periods with the implementation of the TDM measure.  
 
The average number of trips per person increased slightly from 3.33 to 3.43. This reflects activity-based 
re-linking following a commute mode choice, a measure of the impact of the TDM measure on the 
quality of life of affected individuals, shows an increase from 2.59 to 2.73. This is probably due to stops 
at home that were introduced after the above re-linking of activities. This may over-represent the impact 
of the TDM measure on time utility, and constitutes an area where the current prototype needs 
improvement.  



 
7.3.3  Parking Pricing and Commuter Voucher (TDM #4) 
 
The results with parking pricing ($80 a month) with employer-supplied commuter voucher (worth also 
$80 a month) are very similar to those of TDM #2, parking pricing with a surcharge of $8 per day 
(Table 7.3).  The fraction of driver trips is slightly lower (47.3% vs. 45.8%), and that of other trips 
lower (35.8% vs. 37.5%) during the afternoon peak with TDM #4.  Whether these differences are due 
to the commuter voucher is difficult to determine.  Also noticeable is the slight shift in trip timing; the 
fraction of trips during off-peak periods increased from 49.6% with TDM #1 to 50.6% with TDM #4, 
and those during morning and afternoon peaks decreased slightly. 
 

Table 7.3:  AMOS Simulation Results: Parking Pricing 
with Employer-Supplied Commuter Voucher (TDM #4)  

 
 

Total 
 
AM Peak 

 
PM Peak 

 
Off-Peak  

TRIP PURPOSE  
     Work 

 
60.7% 

 
74.0% 

 
65.0% 

 
51.6%  

     Non-Work 
 

39.3% 
 

26.0% 
 

35.0% 
 

48.4%  
TRAVEL MODE  
     Auto - Driver 

 
55.3% 

 
68.8% 

 
45.8% 

 
51.6%  

     Auto - Passenger 
 

20.0% 
 

16.2% 
 

16.7% 
 

23.5%  
     Other 

 
24.7% 

 
14.9% 

 
37.5% 

 
24.6%  

TRIP DURATION (min.)  
     Total 

 
24.1 

 
33.2 

 
26.8 

 
17.9  

     Auto-Driver 
 

26.3 
 

34.9 
 

31.2 
 

18.3  
     Auto-Passenger 

 
26.5 

 
38.0 

 
41.5 

 
17.6  

     Other 
 

17.0 
 

19.8 
 

14.9 
 

17.5  
HOT STARTS (%) 

 
10.6% 

 
12.9% 

 
0.8% 

 
13.5%  

PERCENT OF TRIPS 
 

100% 
 

27.7% 
 

21.6% 
 

50.7%  
TRIPS PER PERSON     

 
3.46 

 
 

 
 

 
  

IN-HOME TIME UTILITY 
 

2.78 
 

 
 

 
 

 
 
7.3.4  Congestion Pricing (TDM #5) and Synergy Combination (TDM #6) 
 
The results with congestion pricing at a level of $0.50 per mile with 30% reduction in travel time, are 
again similar to those of the previous two TDM scenarios (Table 7.4).  The fraction of auto trips is the 
highest with this TDM, but no discernible differences exist for the morning peak period.  During the 
afternoon peak period, TDM #6 has the largest fraction of other trips.  These differences, however, are 
probably due to the randomness associated with Monte Carlo simulation, and are unlikely to represent 



differential effects of these TDM scenarios.  The synergy combination Table 7.5 (TDM #6), produced 
virtually the same results as TDM #5, and very similar results as TDM #4. 
 
 Table 7.4:  AMOS Simulation Results: Congestion Pricing (TDM #5)  

 
 

Total 
 
AM Peak 

 
PM Peak 

 
Off-Peak  

TRIP PURPOSE  
     Work 

 
60.8% 

 
74.0% 

 
66.1% 

 
51.2%  

     Non-Work 
 

39.2% 
 

26.0% 
 

33.9% 
 

48.8%  
TRAVEL MODE  
     Auto - Driver 

 
55.8% 

 
68.8% 

 
46.3% 

 
52.7%  

     Auto - Passenger 
 

19.8% 
 

16.9% 
 

15.7% 
 

23.1%  
     Other 

 
24.4% 

 
14.3% 

 
38.0% 

 
24.2%  

TRIP DURATION (min.)  
     Total 

 
23.9 

 
32.8 

 
26.7 

 
17.8  

     Auto-Driver 
 

25.8 
 

34.4 
 

31.0 
 

17.7  
     Auto-Passenger 

 
26.7 

 
37.3 

 
43.2 

 
17.7  

     Other 
 

17.0 
 

19.6 
 

14.7 
 

17.8  
HOT STARTS (%) 

 
10.8% 

 
13.0% 

 
1.7% 

 
13.5%  

PERCENT OF TRIPS 
 

100% 
 

27.7% 
 

21.8% 
 

50.5%  
TRIPS PER PERSON 

 
3.47 

 
 

 
 

 
  

IN-HOME TIME UTILITY 
 

2.77 
 

 
 

 
 

 
 

Table 7.5:  AMOS Simulation Results: Synergy Combination 
of Parking Pricing and Congestion Pricing (TDM #6)  

 
 

Total 
 

AM Peak 
 
PM Peak 

 
Off-Peak  

TRIP PURPOSE  
     Work 

 
60.8% 

 
74.0% 

 
65.0% 

 
51.8%  

     Non-Work 
 
39.2% 

 
26.0% 

 
35.0% 

 
48.2%  

TRAVEL MODE  
     Auto - Driver 

 
54.7% 

 
67.5% 

 
45.0% 

 
51.8%  

     Auto - Passenger 
 
20.1% 

 
16.9% 

 
16.7% 

 
23.4%  

     Other 
 
25.2% 

 
15.6% 

 
38.3% 

 
24.8%  

TRIP DURATION (min.)  
     Total 

 
24.1 

 
33.2 

 
26.6 

 
18.1  

     Auto-Driver 
 

26.7 
 

35.8 
 

31.3 
 

18.7      



     Auto-Passenger 26.4 37.3 41.5 17.6  
     Other 

 
16.6 

 
18.0 

 
14.7 

 
17.3  

HOT STARTS (%) 
 
10.8% 

 
13.0% 

 
1.7% 

 
13.5%  

PERCENT OF TRIPS 
 

100% 
 

27.7% 
 

21.6% 
 

50.7%  
TRIPS PER PERSON 

 
3.47 

 
 

 
 

 
  

IN-HOME TIME UTILITY 
 

2.77 
 

 
 

 
 

 
 
7.3.5  Discussion 
 
The exercise here has shown that AMOS is capable of practically producing travel forecasts while 
simulating daily travel patterns.  It has also demonstrated that the TDM measures considered here do 
have certain impacts on travel demand.  From model development viewpoints, results are very 
encouraging as they show that activity-based models can be implemented in a metropolitan region and 
can produce forecasts for policy analysis.   
 
From transportation policy viewpoints the results, however, may seem less encouraging because the 
effects of the TDM scenarios examined here are small, and because there are no discernible differences 
among the impacts of the respective TDM scenarios.  These results may be simply due to the small 
sample used in the exercise; the sample to contain a set of commuters in similar travel environments who 
tended to behave in similar ways.  In fact the small fraction of auto trips during the afternoon peak 
period in the sample is suggestive of such sampling error. 
 
It is also conceivable that the commuters in the sample had very limited alternative commute options and 
were able to respond within very narrow ranges to whatever TDM scenarios were being implemented.  
Whether this observation can be generalized or not needs to be determined in the future by the analysis 
of a full data set. 
 
Another possibility is that the Response Option Generator has not been fine-tuned enough to be able to 
detect possibly minute differences in commuters’ responses to different TDM measures.  In particular, 
the results suggest that a neural network be developed for each TDM measure separately (in the current 
prototype, the neural network is designed to be able to handle all TDM scenarios examined here). This 
is another area where the current AMOS prototype can be improved.  
 
The invariance in simulation results across the TDM scenarios may also be due to the fact that 
destination choice has not been implemented in the current AMOS prototype.  In addition, the simplistic 
evaluation and acceptance rules adopted in the prototype may have resulted in premature search 
termination for each commuter, possibly leading to the acceptance of the baseline patterns with a higher 
probability than it should receive. 
 
As noted earlier, this exercise has been made for illustrative purposes and the size of the sample used 
here, and some of the simplifying assumptions existent in the prototype, warrant neither generalization of 



the results obtained here nor general assessment of the relative effectiveness of the TDM scenarios 
examined here. 
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Chapter 8:  Conclusions and Recommendations 
 
This project represents the first implementation of a full-fledged activity-based model system for 
transportation planning and policy analysis.  Despite the theoretical arguments that warrant their practical 
applications, activity-based approaches remained within the domain of academia for nearly two 
decades.  The development of AMOS and its implementation in the Washington, D.C., metropolitan 
area, therefore, represent a significant step forward in transportation planning and policy analysis.  The 
development is especially significant considering the importance of travel demand management  in the 
current planning contexts set forth by the Clean Air Act Amendments and Intermodal Surface 
Transportation Efficiency Act. 
 
In the project, a micro-simulation model system which produces travel demand forecasts based on 
principles of activity-based analysis has been constructed and applied to selected set of TDM measures 
using a sample of trip diaries from the 1994 MWCOG survey.  Because of the simplifying assumptions 
adopted in the current prototype and the small sample used in the TDM evaluation exercise, the results 
obtained in the study are unfortunately difficult to validate or generalize. Despite these limitations, the 
study is nonetheless believed to have contributed significantly to the field of transportation planning by 
demonstrating that activity-based approaches are potential methods for demand forecasting and policy 
analysis. The achievements of this effort can be summarized as follows. 
 
• The project has demonstrated that the activity-based model system can be implemented in a 

metropolitan area using data available from a typical MPO, such as trip diary data, network travel 
time data, and land-use inventory data (the only additional data needed for AMOS implementation 
are small to medium-scale stated-preference survey results from the area which are used to 
customize a component of AMOS to the area residents’ responsiveness to TDM measures). 

 
• The TDM evaluation exercise has offered evidence that travel demand forecasts can be developed 

while treating the daily travel pattern in its entirety, without breaking it into individual trips and 
thereby compromising the interdependencies and continuities that exist across the series of trips 
made by a traveler. 

 
• This also implies that practical capabilities have been developed to assess TDM impacts more 

cohesively while accounting for secondary and tertiary changes in a traveler’s daily travel pattern 
that are brought about as results of a primary change in response to a TDM measure (for example, 
if an SOV commuter, who stops on the way to and from work to drop off and pick up a child at 
day-care, switches to carpooling in response to congestion pricing (primary change), then new, two 



round-trip SOV trips may be made between the home and day-care to drop off and pick up the 
child). 

 
• The AMOS survey designed in this project has shown that the stated-preference questions 

developed in this project have produced credible results (except for the case of a particular synergy 
combination of two TDM measures), and that the survey can be applied to obtain information vital 
for the assessment of potential effectiveness of alternative TDM measures. 

 
• The AMOS survey data produced rich statistical results that have revealed the characteristics of 

responses commuters would show when faced with TDM measures; for example, female 
commuters who make stops on the way to or from work tend not change their travel in response to 
a TDM measure. 

 
The numerical examples using the sample of MWCOG trip diary data have shown the AMOS 
prototype is capable of producing aggregate statistics of travel demand at levels that are comparable to 
the conventional trip-based model systems (except that the current version of AMOS operate with 
static zone-to-zone travel time matrices rather than internally conducting network assignment). 
 
It is worthy to note that the development of the AMOS prototype incorporates a number of theoretical 
concepts, such as “adaptation behavior” and “time-space constraints,” into a practical model system 
which fully utilizes the data that are maintained by a typical MPO. 
 
It is also worthy to note that the survey conducted in this project collected a wide range of information 
that was needed to develop the prototype.  In the future when AMOS is more fully developed, then the 
contents of the survey can be substantially reduced.  Therefore, 
 
• In the future, AMOS can be implemented in a metropolitan area using the data bases maintained by 

the area MPO and a low-cost, small-sample survey that can be readily administered.  Furthermore, 
this survey is not required if customizing a component of AMOS to the area to reflect its residents’ 
TDM responsiveness, is not desired. 

It is noted that fully developing AMOS, however, will require a significant amount of data. This is further 
discussed below as one of the recommendations.  
 
It is believed that AMOS will be in the near future a useful short-term policy analysis tool for MPOs that 
seek the most effective set of transportation policy measures.  At this point, however, the AMOS 
prototype contains several areas that need improvement.  For example, as noted in Section 7, a 
component, the Response Option Generator, may not have been fine-tuned enough to be able to detect 
possible differences in commuters’ responses to different TDM measures, and the search termination 
rule adopted is overly simplistic  Considerations of the needs for new transportation policy tools and the 
current state of development of AMOS have led to the following recommendations. 
 
The recommendations following suggest possible courses of action to support the expeditious transfer of 
AMOS to MPOs and other interested parties, recognize the continuing programmatic obligations 



imposed on MPOs as defined by federal law and implementing regulations, and ensure that AMOS 
becomes a valuable tool for a large number of diverse MPOs and other stakeholder organizations: 
 
Enhance AMOS Performance. This category is defined to comprise all actions which enhance the 
productivity of the existing version of AMOS: 
 
• Quality and Accuracy -- Focus on refinement and replacement of current analytical techniques 

used in AMOS including, but not limited to re-training neural networks, incorporating destination 
choice components, and enhancing the realism of each model development. These actions are short-
term, since they are improvements in current methodology relying for the part on current data.    

 
• Cost Reduction and Control Measures -- The value to achieving acceptability of AMOS by 

MPOs is enormous in an era of either limited or declining budgets. One large cost element in 
implementing AMOS is the activity-based survey data that it requires. It is believed that there are 
approaches which require investigation including, but not limited to, regional transfers of existing 
survey data, and synthetic households. 

 
• Data Collection -- Cost reduction at MPO levels can be achieved by developing a robust model 

system that can be implemented to any locale with minimum modifications and therefore with less 
implementation costs. The AMOS survey in the MWCOG survey area contained a substantial 
amount of questions that probed into commuters’ activity scheduling, work schedules, and various 
types of constraints governing their travel behavior. Development of a generalized model system 
calls for staging an extensive data collection effort in multiple urban areas. Furthermore, the AMOS 
survey in the MWCOG area was limited to commuters; no information is obtained about the travel 
behavior and TDM adaptation behavior by non-commuters. It is believed that such data collection 
efforts will be most effective when they are tied to the implementation of TDM measures and take 
on a form of before-and-after panel study.  

 
Increase AMOS Applicability.  This category is defined to comprise all actions which increase the 
applicability (or scope) of AMOS, and could easily necessitate the creation of a new version. One clear 
way to expedite the transfer of AMOS to interested parties is to modify AMOS so that it is applicable 
to a greater variety of MPO situations, thereby increasing the number of MPOs who would find it to be 
a useful tool: 
 
• Case Studies  -- This report marks the completion of the testing of the AMOS prototype for the 

metropolitan Washington, D.C., area.  It is recognized that the extent of AMOS “acceptability” 
depends in part on the number and character of demonstrations. It is recommended that three or 
more case studies be conducted in metropolitan areas that are widely different in geographical 
location and other attributes. 

 
• Adaptability -- It is suggested that efforts be made to increase the scope of AMOS to address a 

greater number of policy issues including more TDM measures, and a more rigorous treatment of 
land-use, air quality, energy use, advanced transportation technologies, and alternative 



transportation fuels.  In this manner AMOS becomes more adaptable to a wide variety of MPO 
situations. 

 
Improve AMOS Usability.  This category is defined to comprise all actions which enhance the 
usability of the existing version of AMOS.  The following represent areas for improving the usability of 
AMOS: 
 
• User Interface Enhancements -- For the immediate future, it is suggested that substantive value 

could be achieved in ensuring AMOS is user-friendly, including development of: Enhanced Graphic 
User Interface (GUI), and computer files comprising a “User’s Manual” and a “User’s Tutorial.”  
Field research is important to determine what is needed by and helpful to MPO and other key end-
users. 

 
• Technical Support -- Opportunities exist to provide on-going AMOS technical support and related 

information to MPOs and other parties-of-interest through Internet.  These services would provide 
immediate answers to questions like `What is AMOS?’, `Who can use it?’, `How is it accessed?’ 
and other basic information. The technical support to AMOS users should be provided to quickly 
respond and help solve situational and generic problems in its use. 

 
Disseminate AMOS Information.  This category is defined to comprise all actions which disseminate 
information on AMOS to MPO and other potential users. 
 
• MPO Dissemination -- There are several kinds of activities which would support the objective of 

familiarizing representatives of MPO and other organizations (e.g., environmental groups) with 
AMOS including, but not limited to, regional short courses, individual briefings, and Internet access. 

 
• General Communications -- There are activities essential to making the transportation 

stakeholders aware of AMOS. These activities include, but are not limited to, preparation of 
selected publications such as AMOS pamphlets, manuals, conference papers, and targeted 
presentations and briefings. 
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Appendix A: Selection of TCMs 
 
A.1  Overview 
 
A key step in the study was the selection of the Transportation Control Measures (TCMs) that were 
used in the  implementation of AMOS for the MWCOG regions.  The specific TCMs selected dictated 
the data requirements for the AMOS survey (See Section 6) and some design elements of the AMOS 
prototype. The effectiveness of the TCM selection process was crucial, since it had to address factors 
that influence travel behavior; ensure reasonable inclusion of these factors in the selection of candidate 



TCMs; ensure that the AMOS survey strategy collected data essential in an acceptable testing of the 
selected TCMs, and allowed reasonable specification of the evaluation measures for the TCMs. 
 
Twenty eight TCMs were selected for detailed evaluation in this research project by representatives of 
FHWA, the U.S. EPA, and MWCOG's Travel Forecasting and Traffic Mitigation  Subcommittees.  
Based on a ranking of the 28 TCM candidates, six TCMs each were then selected for inclusion in this 
AMOS research project. 
 
TCM Set 1: 
• Regional voucher program 
• Congestion pricing 
• Combination of regional voucher program and congestion pricing 
 
TCM Set 2: 
• Bicycle/pedestrian measures 
• Employee parking space tax 
• Combination of bicycle/pedestrian measures and parking space tax. 
 
The research objective of this project is to prototype and demonstrate the effectiveness of an activity-
based approach to travel demand modeling in a real-world context.  Hence, the TCMs to be evaluated 
in this research project were selected to meet either of the following criteria: 
 
1. The measures can be analyzed with both four-step and activity-based modeling approaches, but the 

activity-based approach performs significantly better. 
2. The measures can be analyzed poorly or not at all with the four-step approach, but can be analyzed 

well with the activity-based approach. 
 
Exhibit 1 compares and contrasts the analysis capabilities of the four-step and activity-based 
approaches for the TCMs that we propose to analyze.  The table reflects the following practice in the 
four-step process, which is typical of that used in the U.S.  Trip generation depends on population and 
land-use activity only, and is insensitive to price.  Trip distribution depends on estimated trip generation 
and highway travel times only.  Mode choice can include characteristics of the traveler in addition to 
modal costs and levels of service.  Trip timing is simulated by estimating the time distribution of trips by 
trip type, either from national or regional averages, or from a regional household travel survey.  Non-
motorized modes are usually ignored entirely, although some agencies have models that do a "pre-mode 
split" to separate out bicycle and pedestrian trips prior to trip distribution and mode choice; these pre-
mode split models typically depend only on socioeconomic characteristics of the traveler, and are 
insensitive to modal attributes. 
 

Exhibit 1: Comparison of Analysis Capabilities: Four-Step and Activity-Based Approaches  
TCM Measure  

 
Four-Step 

 
Activity-Based  

1.  Set 1 
 
 

 
    



1.1  Regional voucher 
program 

Modeled through effects on mode 
choice as addition to auto travel cost.  
Ignores effects on trip generation, 
distribution, timing. 

Captures effects on trip 
generation, trip timing, 
distribution, mode choice. 

 
1.2  Congestion pricing 

 
Same as 1.1. 

 
Same as 1.1.  

1.3  Combination of 
regional voucher and 
congestion pricing 

 
Same as 1.1.  Assumes policies are 
additive; cannot estimate interaction 
effects. 

 
Same as 1.1.  Can capture 
interaction effects between 
policies.  

2.  Set 2 
 
 

 
  

2.1  Bicycle/pedestrian 
measures 

 
Bicycle and pedestrian modes typically 
ignored by most four-step modeling 
approaches. 

 
Same as 1.1. 

 
2.2  Employee parking 
space tax 

 
Modeled through effects on mode 
choice as addition to auto travel cost.  
Ignores effects on trip generation, 
distribution, timing. 

 
Same as 1.1. 

 
2.3  Bicycle/pedestrian 
measures and employee 
parking space tax 

 
Can only look at effects of parking 
space tax; ignores effects of 
bicycle/pedestrian measures.  Cannot 
capture interaction effects. 

 
Same as 1.3. 

 
The following factors were considered critical during the comparison between the four-step and activity-
based approaches: 
 
• Travel costs enter the four-step process only through the mode choice model.  The activity-based 

model can estimate the effects of travel costs on all aspects of travel, including trip generation, trip 
distribution, and trip timing. 

 
• Bicycle and pedestrian modes are usually ignored within the four-step process.  Four-step 

approaches that include these modes are insensitive either to level of service characteristics of these 
modes or cannot reflect attributes such as safety and security associated with separated bikeways 
and secure bike parking facilities. 

 
The four-step process assumes an additive effect of combined measures.  The activity-based approach 
can account for interaction effects. 
 
A.2  Discussion of the Individual TCM Options  
 
The selection of the 6 TCMs was made based on an assessment of the 28 candidate TCMs as related 
to implementation feasibility using a stated-preference survey and consistency with objectives of this 



research project. The 28 candidate TCMs fall into 6 basic categories which are discussed in the 
following sections.  Exhibit 2 summarizes the 28 candidate TCMs their respective ranking. 
 
A.2.1  VMT or Gas Tax  
 
The gas tax measure has a short-term versus a long-term response consisting of reducing VMT via 
shorter trips and changing modes in the former case, while individuals may switch to more fuel efficient 
vehicles in the latter case.  A vehicle choice model is required to address the vehicle switching issues, 
however this is beyond the scope of the current project. 
 
While neither measure targets specific uses of the vehicle, which are issues that we hope to explore in 
AMOS' development, both measures are feasible to assess within the current survey effort given the 
limitation described above for gas taxes.  Should these measures be selected, setting the fees to recover 
local general funds spent on road construction (i.e., shortfalls of revenues from local gas taxes and user 
fees) is complicated by the fact that local property taxes are transferred to state and federal road 
projects.  This suggests that a more complete analysis would be required to determine the net subsidy of 
all road construction funded by local government.  Instead of entering into this more complex analysis at 
this point, we suggest that a range of fee values is selected for exploring the sensitivity of vehicle use to 
the cost per mile. 
 
A.2.2  Parking Pricing 
 
This topic covers a combination of policies that include cash-out subsidy, regional voucher programs, 
and employee parking space taxes. 
 
Cash-out Policy 
 
A cash-out policy requires an employer to calculate the subsidy given to employees who park at the 
work place for free or at reduced rates.  The employer must subsidize transit or HOV users at the same 
rate.  This policy presents several problems for analysis.  It is difficult to estimate out-of-pocket costs 
that an employer subsidizes based on the full cost of a parking space at the place of employment, less 
the amount that the employer pays.  This subsidy can be estimated only on an aggregate basis 
irrespective of the type of parking structure and other anomalies that affect parking prices in any given 
locale.  From the point of view of the survey, it is not possible to determine the amount of the parking 
subsidy prior to the time of the survey.  Hence, we will not test a cash-out policy. 
 
Regional Voucher Program 
 
A regional voucher program requires that employers give employees a fixed travel allowance (e.g., $60 
per month); SOV users who park at the work place are charged an amount equal to the travel 
allowance.  SOV users would see no net change in their benefits; HOV users would gain in an amount 
that depended on vehicle occupancy, assuming that parking costs were shared; others would receive the 
full travel allowance. 



 
This policy is much easier to collect information on because it is not necessary to estimate the amount of 
the current effective subsidy.  Hence, it is the most likely candidate TCM measure for inclusion in the 
project. 
 
This policy has the disadvantage that it may not appear sensible to those who currently park at the work 
place:  the employer is simultaneously giving them a travel allowance and taking it away.  A possible 
variation on this policy is to charge an amount for parking that is higher than the travel allowance, 
requiring those who park to pay something.  The amount to be charged would depend on the area 
within the region (e.g., Washington CBD, outer suburbs, etc.).  For areas where there is currently no 
parking charge, the required payment would be in the form of a parking space tax. 
 
This variation is conceptually as straightforward to include in the model as is the regular regional voucher 
program.  It would, however, require some extra effort in survey design because the amount of the 
subsidy, and the amount charged for parking, would have to depend on the location of the work place. 
 
Employee Parking Space Tax 
 
If the Employee Parking Space Tax is framed as a pass-through fee to employees, then it represents 
another variation on the cash-out subsidy or regional voucher program, except that it would appear as a 
disincentive; as discussed above.  As such, there is no reason that it cannot be addressed in the SP 
survey. 
 
A.2.3  Congestion Pricing 
 
This measure provides the opportunity to develop a central feature that the activity-time framework 
offers, and is feasible within the current scope of work.  Traveler response to peak period pricing that 
can be captured include changing departure times, changing sequence of activities and trips, changing 
activities and trips, and changing modes.  We believe that for simplicity of analysis (and to conform with 
economic rationality), congestion pricing should be assumed to apply to all roadways, not just limited-
access facilities.  This is within the scope of current technology; for example, the DRIVE program in 
Europe includes a demonstration of technology for collecting road user charges. 
 
A.2.4  Region-Wide HOV Network 
 
As currently proposed by the Washington COG, this measure would entail building a system of HOV 
lanes throughout the region.  Analyzing this measure would require that we estimate for each traveler the 
portion of each trip that is currently on a highway that would be included in the HOV network.  While it 
is possible to develop a method that provides travel times by origin-destination pairs matched for the 
HOV network, this would require a commitment of an estimated two to three person weeks on the part 
of COG staff or an alternate to develop.  It would also be necessary to determine whether a traveler 
who currently does not use these highways would be diverted to use the HOV facilities, which is at the 
frontier of current research in route choice and beyond the current state of practice in network 



modeling.  Hence, this measure would be conceptually difficult to collect stated-preference data on and 
model.  We do not propose to include it in the list of TCMs for implementation. 
 
A.2.5  Bicycle/Pedestrian Measures  
 
Bicycle/Pedestrian Measures can be framed at two levels, only one of which is feasible to analyze within 
the current scope of effort.  A number of key factors can contribute to a bicycle/pedestrian strategy 
including: (1) a safe and continuous network of bicycle and pedestrian pathways; (2) safe parking at 
transit and metro stations, as well as park and ride lots; (3) amenities to facilitate the use of these modes 
such as showers at the place of work; and (4) urban redesign factors (e.g., high density development, 
retail center development, traffic calming).   The first three factors can be combined into a 
"bicycle/pedestrian" scenario that can be credibly explored using stated-preference (SP) questions 
within the current scope of effort.  The development of  a "bicycle/pedestrian" capability into the current 
research effort would capitalize on the capabilities of AMOS that are largely unmet by other modeling 
approaches.  
 
It seems to us that whether cycling is a practical thing to do is rather easy for people to judge and there 
will not be too many people in the gray zone.  The SP approach would consist of describing the 
scenario to the interviewee and asking questions like, "Would you consider riding to the rail station, then 
taking the rail to work?".  But we want to add that practically nobody used the bicycle as a feeder mode 
to rail 20 years ago in Japan; now there are more bicycles around every rail station than there are 
parking spaces.  Who knows whether the same change won't take place in the US before too long? 
 
Extending the bicycle/pedestrian scenario to include urban redesign implies a departure from current 
conditions that strains the validity of the SP approach.  It constitutes an additional "urban redesign" 
scenario that requires a complete evaluation in and of itself.  Presenting a land-use scenario in a stated-
preference (SP) format pushes the edge of making the questions as "real" as possible to the interviewee. 
 The SP method depends on the customization of questions to real-world conditions (i.e., the "realness") 
for the validity of its results.  There are tow different approaches to achieving this.  The first consists of 
designing detailed pair-wise trade-offs between key site design criteria and presenting these choices in 
graphical form to the interviewee.  Unfortunately, the cost of this type of customized graphics approach 
is prohibitive within the scope of the current survey budget.  The second approach to modeling a 
complex land-use scenario would be to build AMOS using actual micro-level land-use data.  While 
Montgomery County does have this type of data, the project would be required to implement AMOS at 
two different levels of aggregation, i.e., one for Montgomery County and another for the MWCOG 
regions in their entirety.  Again, the scope of the existing budget cannot bear this expense. 
 
 Exhibit 2:  Detailed Assessment of MWCOG Proposed TCMs 

 
TCMs 

 
Source 

 
4 

Step 
 
Amos 

 
Data Sources 

 
Segment 

 
Synergies 

 
Rank  

Pricing Measures   
Gas Tax Increase: $.25/gal for 10 

 
COG 12 

 
1 

 
4 

 
HH survey 

 
4 

 
A-5, B, 

 
4 



years (M-10), auto insurance C, & D  
VMT Tax: $.05/mi for > 10,000 
mi/credit LEVs (M-15) 

 
COG 14 

 
 

 
 

 
 

 
 

 
 

 
 

 
VDRPT 1 

 
1 

 
4 

 
HH 

survey 

 
4 

 
A-5, B, 
C, & D 

 
4 

 
 

 
Pollution Fee: $500/yr/gas vehicle 
(M-9) 

 
VDRPT 

1 

 
0 

 
4 

 
HH survey 

 
4 

 
A-5, B, 
C, & D 

 
4 

 
Regional Voucher Program: $60/mo 
to all employees & $60/mo parking 
charge (M-42) 

 
VDRPT 

2 

 
0 

 
4 

 
HH survey 

 
3 

 
A-5, C, 

D 

 
5 

 
Transit Incentives: $1/trip or ½ fare 
Metro feeders (M-8,14) 

 
VDRPT 

5 

 
3 

 
5 

 
HH survey   mode 

choice data 

 
3 

 
A, B, C, 

D 

 
3 

 
Congestion Pricing on LOV: $.20/mi 
< 3 occupants (M-11) 

 
FED 

 
1* 

 
5* 

 
HH survey 

 
4 

 
D, esp D-

2 

 
5 

 
B. Parking Measures  
1. Build Park-n-Ride Lots (M-39) 

 
COG 1 
VDRPT 

6 

 
0 

 
3 

 
HH survey 

 
4 

 
A-5 

 
2 

 
2. Cash-out Subsidy for 
Transit/HOV: match subsidy for 
employer parking benefits to 
HOV/transit users (M-7) 

 
EPA/CO

G 

 
2 

 
5 

 
HH survey 

 
3 

 
A, C, D 

 
5 

 
3. Employee Parking Space Tax: 
suburb-$14/mo,$25/mo-metro (M-
12,13) 

 
EPA 

 
2 

 
5 

 
HH survey 

 
3 

 
C, D 

 
4 

 
C. Bike/Ped Scenario  
1 Bicycle Element of Long Range 
Plan (M-37): to be specified 

 
COG 6 
VDRPT 

4 

 
 

 
 

 
HH survey 

 
 

 
 

 
 

 
1 Bicycle Racks & Lockers at All 
Transit Stations (M-29) 

 
COG 7 

 
0 

 
3 

 
HH survey 

 
2 

 
A, B, D 

& E 

 
5 

 
1 Pedestrian Facilities Near Rail 
Stations: within 1 mile (M-28) 

 
COG 8 

 
0 

 
3 

 
HH survey 

 
2 

 
A, B, D 

& E 

 
5 

 
1 Bike Incentives: cash-out or 
subsidy for bike-related fees  

 
COG 
23/ 

WABA 

 
0 

 
3 

 
HH survey 

 
1 

 
A, B, D 

& E 

 
2 

 
1 Bike Employee Trip Reduction 
Programs 

 
COG 
24/ 

WABA 

 
1 

 
3 

 
HH survey 

 
2 

 
A, B, D 

& E 

 
4 



 
1 Bike Parking at Public Facilities 

 
COG 
26/ 

WABA 

 
0 

 
3 

 
HH survey 

 
1 

 
A, B, D 

& E 

 
5 

 
Scenario Background: maps & traffic 
engineering for bikes 

 
COG 21 

& 
28/WAB

A 

 
0 

 
1 

 
HH survey 

 
3 

 
A, B, D 

& E 

 
1 

 
Scenario Background: site planning & 
land-use measures 

 
 EDF/ 

 
 

 
 

 
 

 
 

 
 

 
 

 
WABA 

 
0 

 
3 

 
HH 

survey 

 
4 

 
A, B, D 

& E 

 
1 

 
 

 
ETR/ECO/Telecommute 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

Trip Reduction Incentives Program 
(ETR) 

 
COG 4 
VDRPT 

3 

 
0 

 
5 

 
HH survey 

 
4 

 
A & B 

 
 

 
Revised Employee Commute Options 
(ECO): support alternatives to SOV, 
alternative work schedules, incentives 

 
COG 5 
VDRPT 

3 

 
0 

 
5 

 
HH survey 

 
4 

 
A & B 

 
4 

 
Integrated Ridesharing (M-47):  

 
 

 
 

 
 

 
 

 
 

 
 

 
  

-  ride finders 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
-  guaranteed ride home  

 
COG 11 

 
1 

 
 

 
 

 
 

 
 

 
  

1 
 

4 
 

 
 

 
 

 
 

 
 

 
 

  
5 

 
HH 

survey 

 
4 

 
A & B 

 
3 

 
 

 
 

 
 

 
4 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

Financial Incentives for 
Telecommuting Program: for 
employer programs (M-46) 

 
COG 19 
VDRPT 

7 

 
0 

 
5 

 
HH survey 

 
3 

 
A & B 

 
3 

 
Telecommuting Centers in Outlying 
Areas (M-58) 

 
COG 20 
VDRPT 

7 

 
0 

 
5 

 
HH survey 

 
3 

 
A & B 

 
2 

 
Land-Use Measures  
to be specified 

 
 

 
0 

 
3 

 
HH survey Land-

use data 

 
5 

 
A, B, C, 

D 

 
0 

 
Network-based Measures  
Highway Ramp Metering (M-31) 

 
COG 4 

 
2 

 
3 

 
 

 
 

 
 

 
  

Increase Frequency of Existing 
Transit Service (M-25) 

 
COG 5 

 
3 

 
5 

 
HH survey   mode 

choice data 
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Increase Frequency of Commuter 
Rail Service (M-26) 

COG 6 3 5 HH survey   mode 
choice data 

  4 

 
Timed Transfer with Extensive 
Suburban Coverage (M-27) 

 
COG 7 

 
3 

 
4 

 
HH survey   mode 

choice data 

 
 

 
 

 
4 

 
Speed Limit Adherence (M-24) 

 
COG 9 

 
 

 
 

 
 

 
 

 
 

 
  

Flashing Yellow Signals (M-30) 
 
COG 10 

 
0 

 
0 

 
 

 
 

 
 

 
  

Control Extended Idling (M-56) 
 
COG 13 

 
 

 
 

 
 

 
 

 
 

 
  

Marketing &Outreach   
Bike Marketing, Outreach, and 
Education Programs 

 
COG 22 

 
0 

 
   2 

 
HH survey 

 
 

 
 

 
1 

 
Bike Site Planning Programs for 
Developers 

 
COG 25 

 
0 

 
   3 

 
HH survey 

 
 

 
 

 
1 

 
Bike Public Participation and 
Planning Programs 

 
COG 27 

 
0 

 
   1 

 
HH survey 

 
 

 
 

 
1 

 
Notes:  (1)  SCALE: 1 to 5 indicates lowest to highest, as follows: 
 
(a)  4 step and AMOS: ability to evaluate the impacts of the TCM within either model, 
(b)  Segment: preliminary estimate of the relative size of the market segment impacted by the TCM, 
(c)  Synergies: cross-references the TCMs in the matrix that this TCM has potential synergies with, 
(d)  Rank: overall assessment of the value of evaluating this TCM within the current scope of work. 
(2)  Sources refer to documents provided by Virginia Department of Rail and Public Transit (VDRPT) on behalf  
of the Washington COG, the Washington Area Bicycling Association (WABA), the Environmental Defense Fund 
(EDF), and the Washington COG (COG). 
(3)  An asterisk (*) indicates that a complete analysis depends relatively more predominantly on network 
assignment. 
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Appendix B:  AMOS Survey Instrument 
 
Appendix B is not available at this time. 
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Appendix C:  AMOS Survey Databases 
 
PART 1: DEMOGRAPHICS AND STATED PREFERENCES 
FILENAME: AMOSVER1.DAT 
Number of Cases = 656 
 
This data file contains information on person and household demographics as well as the stated 
responses of individuals to various TDM scenarios.  This file was created by combining the following 
raw data files provided to RDC, Inc. by Strategic Consulting Research, Inc., the contracting firm that 
administered the survey and assembled the data bases: 
 
AMOS1.XLS 
AMOS2.XLS 
AMOS3.XLS 
PARK.XLS 
CODES.XLS 
TCM1.XLS 
TCM2.XLS 
TCM3.XLS 
TCM4.XLS 
TCM5.XLS 
TCM6.XLS 
 
The file format with variable definitions and codes is provided first, followed by general notes and 
descriptions of derived variables (not saved in the original data bases) if any. 
 
 VARIABLE DESCRIPTIONS  

Variable No.   
Name  

 
Variable Definition 

 
Question in AMOS 
CATI Instrument  

1 HHID 
 
Household ID Code 

 
  

2 COMMUTER 
 
No of persons in hhld who commute at least once 
per week 

 
CATI-1:Q3 

 
3 RES_TYPE 

 
Type of Residence 

 
CATI-1:Q15  

4 TENURE 
 
Number of years at current address 

 
CATI-1:Q16  

5 OWNRENT 
 
Own or rent home? 

 
CATI-1:Q17  

6 HHLDSIZE 
 
Household size  

 
CATI-1:Q18  

7 GT5YRS 
 
No of persons greater than 5 years of age 

 
CATI-1:Q19  

8 NVEHICLE 
 
No of vehicles owned, leased, etc. 

 
CATI-1:Q21  

9 NBICYCLE 
 
No of bicycles in household  

 
CATI-1:Q26  

10 MARKET_D 
 
Distance to nearest market  

 
CATI-1:Q27    



11 MARKET_U Units of distance to market  CATI-1:Q28  
12 BUSDIST 

 
Distance to nearest bus stop  

 
CATI-1:Q29  

13 BUSUNIT 
 
Units of measurement (miles/blocks)  

 
CATI-1:Q30  

14 METRDIST 
 
Distance to nearest metro/rail stop  

 
CATI-1:Q31  

15 METRUNIT 
 
Units of measurement (miles/blocks)  

 
CATI-1:Q32  

16 PARKDIST 
 
Distance to nearest park 

 
CATI-1:Q33  

17 PARKUNIT 
 
Units of distance to nearest park 

 
CATI-1:Q34  

18 SIDEWALK 
 
Are there sidewalks near home? 

 
CATI-1:Q35  

19 BIKEPATH 
 
Are there bikepaths near home?  

 
CATI-1:Q36  

20 INCOME 
 
Household Income 

 
CATI-1:Q37  

21 PRKCHRG 
 
Parking cost per month 

 
CATI-1:Q88  

22 FREEPAID 
 
Employer paid or free parking 

 
CATI-1:Q90  

23 T_ACCESS 
 
Transit access mode 

 
CATI-1:Q91  

24 T_EGRESS 
 
Transit egress mode  

 
CATI-1:Q92  

25 AGECATEG 
 
Age category of respondent 

 
CATI-1:Q38  

26 GENDER 
 
Gender of respondent  

 
CATI-1:Q39  

27 LICENSE 
 
Is respondent licensed to drive?  

 
CATI-1:Q41  

28 EMPLOY 
 
Employment status of respondent  

 
CATI-1:Q42  

29 WRKPLACE 
 
Place of work (outside/inside home)  

 
CATI-1:Q44  

30 JOB2 
 
Do you have second job? 

 
CATI-1:Q46  

31 JOB2PLC 
 
Place of second job  

 
CATI-1:Q47  

32 HMWKDIST 
 
Distance from home to work place  

 
CATI-1:Q58  

33 HMWKUNIT 
 
Units of measurement (miles/blocks)  

 
CATI-1:Q59  

34 WKHMDIST 
 
Distance from work to home place  

 
CATI-1:Q61  

35 WKHMUNIT 
 
Units of measurement (miles/blocks)  

 
CATI-1:Q62  

36 HMWKTIME 
 
Travel time from home to work (min)  

 
CATI-1:Q161  

37 NDAYSOV 
 
No of days last week by SOV  

 
CATI-1:Q64  

38 NDAYDRIV 
 
No of days last week by Drive with Passengers  

 
CATI-1:Q65  

39 DRIVHHLD 
 
Are passengers hhld members?  

 
CATI-1:Q66  

40 NDAYRIDE 
 
No of days last week by Riding with Someone  

 
CATI-1:Q67  

41 RIDEHHLD 
 
Are passengers hhld members?  

 
CATI-1:Q68  

42 NDAYBUS 
 
No of days last week by Bus/No Rail  

 
CATI-1:Q69  

43 NDAYMETR 
 
No of days last week by Metro/Rail  

 
CATI-1:Q70  

44 NDAYTRN 
 
No of days last week by Train  

 
CATI-1:Q71    



45 NDAYMOP No of days last week by Motorcycle/Moped  CATI-1:Q72  
46 NDAYBIKE 

 
No of days last week by bicycle only  

 
CATI-1:Q73  

47 NDAYWALK 
 
No of days last week by walking only  

 
CATI-1:Q74  

48 NDAYHOME 
 
No of days last week working at home  

 
CATI-1:Q74-2/167  

49 AVLSOV 
 
Is SOV available?  

 
CATI-1:Q76  

50 AVLDRIV 
 
Is Drive with passengers available?  

 
CATI-1:Q77  

51 AVLRIDE 
 
Is Ride with someone available?  

 
CATI-1:Q79  

52 AVLBUS 
 
Is Bus/No Rail available?  

 
CATI-1:Q81  

53 AVLMETR 
 
Is Metro/Rail available?  

 
CATI-1:Q82  

54 AVLTRN 
 
Is Train available?  

 
CATI-1:Q83  

55 AVLMOP 
 
Is Motorcycle/Moped available?  

 
CATI-1:Q84  

56 AVLBIKE 
 
Is Bicycle Only available?  

 
CATI-1:Q85  

57 AVLWALK 
 
Is Walking Only available?  

 
CATI-1:Q86  

58 WK_AR_HR 
 
Work arrival time (hour) 

 
CATI-1:Q93   

59 WK_AR_MN 
 
Work arrival time (minutes)  

 
CATI-1:Q93   

60 EARLY_AR 
 
Flexibility to arrive early (minutes)  

 
CATI-1:Q96  

61 LATE_AR 
 
Flexibility to arrive late (minutes)  

 
CATI-1:Q97  

62 WK_LV_HR 
 
Work leave time (hour) 

 
CATI-1:Q98  

63 WK_LV_MN 
 
Work leave time (minutes)  

 
CATI-1:Q98  

64 EARLY_LV 
 
Flexibility to leave work early (minutes)  

 
CATI-1:Q101  

65 LATE_LV 
 
Flexibility to leave work late (minutes)  

 
CATI-1:Q102  

66 HW_CHILD 
 
No of days dropped child at daycare/school on 
way from home to work 

 
CATI-1:Q104 

 
67 HW_NOTCH 

 
No of days stopped on way from home to work 
other than pickup/drop child 

 
CATI-1:Q105 

 
68 HW_WKREL 

 
No of days stopped on way from home to work 
for work related activity 

 
CATI-1:Q107 

 
69 HW_SHOP 

 
No of days stopped on way from home to work 
for grocery or other shopping Q109 

 
CATI-1:Q108+ 

 
70 HW_PNBSN 

 
No of days stopped on way from home to work 
for personal business 

 
CATI-1:Q110 

 
71 HW_SRVPS 

 
No of days stopped on way from home to work to 
serve passenger other than child 

 
CATI-1:Q113 

 
72 HW_RECR 

 
No of days stopped on way from home to work 
for recreational activity 

 
CATI-1:Q112 

 
73 HW_OTHER 

 
No of days stopped on way from home to work 

 
CATI-1:Q111+ 



for eat, gas, other activities Q114+Q115  
74 WH_CHILD 

 
No of days stopped on way from work to home to 
pickup/drop child at school/daycare 

 
CATI-1:Q117 

 
75 WH_NOTCH 

 
No of days stopped on way from work to home 
other than pickup/drop child 

 
CATI-1:Q118 

 
76 WH_WKREL 

 
No of days stopped on way from work to home 
for work related activity 

 
CATI-1:Q120 

 
77 WH_SHOP 

 
No of days stopped on way from work to home 
for grocery and other shopping Q122 

 
CATI-1:Q121+ 

 
78 WH_PNBSN 

 
No of days stopped on way from work to home 
for personal business 

 
CATI-1:Q123 

 
79 WH_SRVPS 

 
No of days stopped on way from work to home to 
serve passenger other than child 

 
CATI-1:Q126 

 
80 WH_RECR 

 
No of days stopped on way from work to home 
for social recreational activity 

 
CATI-1:Q125 

 
81 WH_OTHER 

 
No of days stopped on way from work to home 
for eat, gas, other activities Q127+Q128 

 
CATI-1:Q124+ 

 
82 AW_TRIP 

 
No of days made car trip while at work  

 
CATI-1:Q129.2/163  

83 AW_WKREL 
 
No of days made work-related trip while at work  

 
CATI-1:Q131  

84 AW_SHOP 
 
No of days made shopping trip while at work 

 
CATI-1:Q132+Q133  

85 AW_PNBSN 
 
No of days made personal business trip while at 
work 

 
CATI-1:Q134 

 
86 AW_RECR 

 
No of days made recreational trip while at work 

 
CATI-1:Q136  

87 AW_SRVPS 
 
No of days made serve passenger trip (other than 
child)while at work 

 
CATI-1:Q137 

 
88 AW_CHILD 

 
No of days made trip to serve child (other than 
school/daycare) while at work 

 
CATI-1:Q137.2/Q166 

 
89 AW_EAT 

 
No of days made eat meal trip while at work 

 
CATI-1:Q135  

90 CCAR_USE 
 
Company car available/use?  

 
CATI-1:Q140+Q141  

91 WALKTM1 
 
Walking time for parking tax scenario(minutes) 

 
CATI-2:Q37  

92 WALKTM2 
 
Walking time for parking tax scenario(minutes) 

 
CATI-2:Q38  

93 TAXQ37 
 
Parking tax for scenario Q37 ($) 

 
CATI-2:Q37  

94 TXQ38 
 
Parking tax for scenario Q38 ($) 

 
CATI-2:Q38  

95 TXQ39_60 
 
Parking tax for TCM1 - Q39/60 

 
  

96 BEN_PARK 
 
Level of Employer Benefit/Parking  

 
CATI-2:Q61/Q66  

97 PAY_TIME 
 
Level of Congestion Pricing/Travel time Reduction 

 
CATI-2:Q63/66    



98 RUR_CITY Rural or City?   
99 PRKRES37 

 
Response to park/walk tradeoff 

 
CATI-2:Q37  

100 PRKRES38   
Response to 
park/walk tradeoff  

 
CATI-2:Q38 

 
 

 
101 TCMRES1 

 
Response to TCM1:Parking tax  

 
CATI-2:Q39  

102 TCMRES2 
 
Response to TCM2:Improved Bicycle Facilities 

 
CATI-2:Q59  

103 TCMRES3 
 
Response to TCM3:TCM1+TCM2 

 
CATI-2:Q60  

104 TCMRES4 
 
Response to TCM4:Employer Benefit+Prking Tax 

 
CATI-2:Q61  

105 TCMRES5 
 
Response to TCM5:Congestion Pricing+ Travel 
Time Benefits 

 
CATI-2:Q63 

 
106 TCMRES6 

 
Response to TCM6:TCM4+TCM5  

 
CATI-2:Q66 

 
 
 VARIABLE CODES  

Variable No.   Name  
 

Coding Scheme   
1=Single Family Detached House  
2=Single Family Attached House  
3=Apartment or Condominium  
4=Mobile Home  
5=Hotel or Motel Unit  
6=Group Quarters Unit 

 
3 RES_TYPE 

 
7=Other  
1=Own  
2=Rent  
3=Don’t Know 

 
5 OWNRENT 

 
4=Refused  
1=Miles  
2=Blocks  
3=Don’t Know 

 
11 MARKET_U 

 
4=Refused  
1=Miles  
2=Blocks  
3=Don’t Know 

 
13 BUSUNIT 

 
4=Refused 



 
1=Miles  
2=Blocks  
3=Don’t Know 

 
15 METRUNIT 

 
4=Refused  
1=Miles  
2=Blocks  
3=Don’t Know 

 
17 PARKUNIT 

 
4=Refused  
1=Yes (sidewalk present)  
2=No (sidewalk absent) 

 
18 SIDEWALK 

 
3=Don’t Know  
1=Yes (bikepath present)  
2=No (bikepath absent) 

 
19 BIKEPATH 

 
3=Don’t Know  
1=Less than $5,000  
2=$5,000 - $10,000  
3=$10,001 - $20,000  
4=$20,001 - $30,000  
5=$30,001 - $50,000  
6=$50,001 - $75,000  
7=$75,001 - $100,000  
8=$100,001 - $125,000  
9=$125,001 - $150,000  
10=Over $150,000  
11=Don’t Know 

 
20 INCOME  

 
12=Refused  
1=Free to park at workplace 

 
22 FREEPAID  

2=Employer pays for parking  
1=Walk only  
2=Drive alone  
3=Drive with others  
4=Get ride from somebody  
5=Bicycle 

 
23 T_ACCESS 

 
6=Other 



 
1=Walk only  
2=Drive alone  
3=Drive with others  
4=Get ride from somebody  
5=Bicycle 

 
24 T_EGRESS 

 
6=Other  
1=5-10 years  
2=11-15 years  
3=16-18 years  
4=19-29 years  
5=30-39 years  
6=40-49 years  
7=50-59 years  
8=Greater than or equal to 60 years  
9=Don’t know 

 
25 AGECATEG 

 
10=Refused  
1=Male 

 
26 GENDER   

2=Female  
1=Person drives  
2=Peson does not drive 

 
27 LICENSE 

 
3=Refused  
1=Employed full time (30+ hours per week)  
2=Employed part time (<30 hours per week)  
3=Student only  
4=Student & work part time  
5=Student & work full time  
6=Seeking work  
7=Retired  
8=Homemaker  
9=Disabled  
10=Volunteer 

 
28 EMPLOY  

 
11=Other  
1=Works mainly at home 

 
29 WRKPLACE  

2=Works at another place 



 
1=Has second job 

 
30 JOB2     

2=Does not have second job  
1=Second job is at home 

 
31 JOB2PLC  

2=Second job is at another place  
1=Miles  
2=Blocks  
3=Don’t Know 

 
33 HMWKUNIT 

 
4=Refused  
1=Miles  
2=Blocks  
3=Don’t Know 

 
35 WKHMUNIT 

 
4=Refused  
1=Vehicle occupants are household members  
2=Not household members  
3=Some are household members 

 
39 DRIVHHLD 

 
4=Don’t know  
1=Vehicle occupants are household members  
2=Not household members  
3=Some are household members 

 
41 RIDEHHLD 

 
4=Don’t know  
1=Yes, it is available  
2=Not available 

 
49 AVLSOV  

 
3=Don’t Know  
1=Yes, it is available  
2=Not available 

 
50 AVLDRIV  

 
3=Don’t Know  
1=Yes, it is available  
2=Not available 

 
51 AVLRIDE  

 
3=Don’t Know  
1=Yes, it is available  
2=Not available 

 
52 AVLBUS  

 
3=Don’t Know  
1=Yes, it is available 

 
53 AVLMETR   

2=Not available 



 
 
3=Don’t Know  
1=Yes, it is available  
2=Not available 

 
54 AVLTRN 

 
3=Don’t Know  
1=Yes, it is available  
2=Not available 

 
55 AVLMOP  

 
3=Don’t Know  
1=Yes, it is available  
2=Not available 

 
56 AVLBIKE  

 
3=Don’t Know  
1=Yes, it is available  
2=Not available 

 
57 AVLWALK  

 
3=Don’t Know  

58 WK_AR_HR  
 
-5=Variable (any hour)  

59 WK_AR_MN 
 
-5=Variable (any minute)  

60 EARLY_AR 
 
-5=Varable (any number of minutes)  

61 LATE_AR 
 
-5=Varable (any number of minutes)  

62 WK_LV_HR 
 
-5=Variable (any hour)  

63 WK_LV_MN 
 
-5=Variable (any minute)  

64 EARLY_LV 
 
-5=Varable (any number of minutes)  

65 LATE_LV 
 
-5=Varable (any number of minutes)  
0=No company car  
1=Company car available for work purposes only  
2=Company car available for home-to-work journey 

 
90 CCAR_USE 

 
3=Other  
1=City (urban) 

 
98 RUR_CITY  

2=Rural  
1=Pay parking tax 

 
99 PRKRES37  

2=Not pay parking tax, would rather walk  
1=Pay parking tax 

 
100 PRKRES38     

2=Not pay parking tax, would rather walk  
1=Change departure time to work  
2=Switch work mode to Walk 

 
101 TCMRES1 

 
3=Switch work mode to Bicycle 



 
4=Switch work mode to Car/Van Pool  
5=Switch work mode to Transit  
6=Switch to Working at Home  
7=No change in behavior  
8=Other 

 

 
9=Refused  
1=Change departure time to work  
2=Switch work mode to Walk  
3=Switch work mode to Bicycle  
4=Switch work mode to Car/Van Pool  
5=Switch work mode to Transit  
6=Switch to Working at Home  
7=No change in behavior  
8=Other 

 
102 TCMRES2 

 
9=Refused  
1=Change departure time to work  
2=Switch work mode to Walk  
3=Switch work mode to Bicycle  
4=Switch work mode to Car/Van Pool  
5=Switch work mode to Transit  
6=Switch to Working at Home  
7=No change in behavior  
8=Other 

 
103 TCMRES3 

 
9=Refused  
1=Change departure time to work  
2=Switch work mode to Walk  
3=Switch work mode to Bicycle  
4=Switch work mode to Car/Van Pool  
5=Switch work mode to Transit  
6=Switch to Working at Home  
7=No change in behavior  
8=Other 

 
104 TCMRES4 

 
9=Refused  

105 TCMRES5 
 
1=Change departure time to work 



 
2=Switch work mode to Walk  
3=Switch work mode to Bicycle  
4=Switch work mode to Car/Van Pool  
5=Switch work mode to Transit  
6=Switch to Working at Home  
7=No change in behavior  
8=Other  
9=Refused 

 

 
  
1=Change departure time to work  
2=Switch work mode to Walk  
3=Switch work mode to Bicycle  
4=Switch work mode to Car/Van Pool  
5=Switch work mode to Transit  
6=Switch to Working at Home  
7=No change in behavior  
8=Other 

 
106 TCMRES6 

 
9=Refused  

NOTE 
 
Negative values for any data field are defined as follows, unless otherwise specified above: 
   -1 = REFUSED 
   -2 = DONT KNOW 
   -3 = SKIPPED (NOT APPLICABLE) 
   -4 = NOT APPLICABLE 
   -5 = ANY HOUR (OR MINUTE), i.e., flexible hours 
   -6 = VARIES 

 
 
 DATA FILE FORMAT  

Column  
Variable No. Name 

 
Record No. 

 
Beg       

 
End 

 
Input Format 

 
1 HHID 

 
1 

 
1 

 
8 

 
F8.2  

2 COMMUTER 
 

1 
 

9 
 

16 
 

F8.2  
3 RES_TYPE 

 
1 

 
17 

 
24 

 
F8.2  

4 TENURE 
 

1 
 

25 
 

32 
 

F8.2      



5 OWNRENT 1 33 40 F8.2  
6 HHLDSIZE 

 
1 

 
41 

 
48 

 
F8.2  

7 GT5YRS 
 

1 
 

49 
 

56 
 

F8.2  
8 NVEHICLE 

 
1 

 
57 

 
64 

 
F8.2  

9 NBICYCLE 
 

1 
 

65 
 

72 
 

F8.2  
 10 MARKET_D 

 
1 

 
73 

 
80 

 
F8.2  

 11 MARKET_U 
 

2 
 

1 
 

8 
 

F8.2  
 12 BUSDIST 

 
2 

 
9 

 
16 

 
F8.2  

 13 BUSUNIT 
 

2 
 

17 
 

24 
 

F8.2  
 14 METRDIST 

 
2 

 
25 

 
32 

 
F8.2  

 15 METRUNIT 
 

2 
 

33 
 

40 
 

F8.2  
 16 PARKDIST 

 
2 

 
41 

 
48 

 
F8.2  

 17 PARKUNIT 
 

2 
 

49 
 

56 
 

F8.2  
 18 SIDEWALK 

 
2 

 
57 

 
64 

 
F8.2  

 19 BIKEPATH 
 

2 
 

65 
 

72 
 

F8.2  
 20 INCOME 

 
2 

 
73 

 
80 

 
F8.2  

 21 PRKCHRG 
 

3 
 

1 
 

8 
 

F8.2  
 22 FREEPAID 

 
3 

 
9 

 
16 

 
F8.2  

 23 T_ACCESS 
 

3 
 

17 
 

24 
 

F8.2  
 24 T_EGRESS 

 
3 

 
25 

 
32 

 
F8.2  

 25 AGECATEG 
 

3 
 

33 
 

40 
 

F8.2  
 26 GENDER 

 
3 

 
41 

 
48 

 
F8.2  

 27 LICENSE 
 

3 
 

49 
 

56 
 

F8.2  
 28 EMPLOY 

 
3 

 
57 

 
64 

 
F8.2  

 29 WRKPLACE 
 

3 
 

65 
 

72 
 

F8.2  
 30 JOB2 

 
3 

 
73 

 
80 

 
F8.2  

 31 JOB2PLC 
 

4 
 

1 
 

8 
 

F8.2  
 32 HMWKDIST 

 
4 

 
9 

 
16 

 
F8.2  

 33 HMWKUNIT 
 

4 
 

17 
 

24 
 

F8.2  
 34 WKHMDIST 

 
4 

 
25 

 
32 

 
F8.2  

 35 WKHMUNIT 
 

4 
 

33 
 

40 
 

F8.2  
 36 HMWKTIME 

 
4 

 
41 

 
48 

 
F8.2  

 37 NDAYSOV 
 

4 
 

49 
 

56 
 

F8.2  
 38 NDAYDRIV 

 
4 

 
57 

 
64 

 
F8.2      



 39 DRIVHHLD 4 65 72 F8.2  
 40 NDAYRIDE 

 
4 

 
73 

 
80 

 
F8.2  

 41 RIDEHHLD 
 

5 
 

1 
 

8 
 

F8.2  
 42 NDAYBUS 

 
5 

 
9 

 
16 

 
F8.2  

 43 NDAYMETR 
 

5 
 

17 
 

24 
 

F8.2  
 44 NDAYTRN 

 
5 

 
25 

 
32 

 
F8.2  

 45 NDAYMOP 
 

5 
 

33 
 

40 
 

F8.2  
 46 NDAYBIKE 

 
5 

 
41 

 
48 

 
F8.2  

 47 NDAYWALK 
 

5 
 

49 
 

56 
 

F8.2  
 48 NDAYHOME 

 
5 

 
57 

 
64 

 
F8.2  

 49 AVLSOV 
 

5 
 

65 
 

72 
 

F8.2  
 50 AVLDRIV 

 
5 

 
73 

 
80 

 
F8.2  

 51 AVLRIDE 
 

6 
 

1 
 

8 
 

F8.2  
 52 AVLBUS 

 
6 

 
9 

 
16 

 
F8.2  

53 AVLMETR 
 

6 
 

17 
 

24 
 

F8.2  
54 AVLTRN 

 
6 

 
25 

 
32 

 
F8.2  

55 AVLMOP 
 

6 
 

33 
 

40 
 

F8.2  
56 AVLBIKE 

 
6 

 
41 

 
48 

 
F8.2  

57 AVLWALK 
 

6 
 

49 
 

56 
 

F8.2  
58 WK_AR_HR 

 
6 

 
57 

 
64 

 
F8.2  

59 WK_AR_MN 
 

6 
 

65 
 

72 
 

F8.2  
60 EARLY_AR 

 
6 

 
73 

 
80 

 
F8.2  

61 LATE_AR 
 

7 
 

1 
 

8 
 

F8.2  
62 WK_LV_HR 

 
7 

 
9 

 
16 

 
F8.2  

63 WK_LV_MN 
 

7 
 

17 
 

24 
 

F8.2  
64 EARLY_LV 

 
7 

 
25 

 
32 

 
F8.2  

65 LATE_LV 
 

7 
 

33 
 

40 
 

F8.2  
66 HW_CHILD 

 
7 

 
41 

 
48 

 
F8.2  

67 HW_NOTCH 
 

7 
 

49 
 

56 
 

F8.2  
68 HW_WKREL 

 
7 

 
57 

 
64 

 
F8.2  

69 HW_SHOP 
 

7 
 

65 
 

72 
 

F8.2  
70 HW_PNBSN 

 
7 

 
73 

 
80 

 
F8.2  

71 HW_SRVPS 
 

8 
 

1 
 

8 
 

F8.2  
72 HW_RECR 

 
8 

 
9 

 
16 

 
F8.2      



73 HW_OTHER 8 17 24 F8.2  
74 WH_CHILD 

 
8 

 
25 

 
32 

 
F8.2  

75 WH_NOTCH 
 

8 
 

33 
 

40 
 

F8.2  
76 WH_WKREL 

 
8 

 
41 

 
48 

 
F8.2  

77 WH_SHOP 
 

8 
 

49 
 

56 
 

F8.2  
78 WH_PNBSN 

 
8 

 
57 

 
64 

 
F8.2  

79 WH_SRVPS 
 

8 
 

65 
 

72 
 

F8.2  
80 WH_RECR 

 
8 

 
73 

 
80 

 
F8.2  

81 WH_OTHER 
 

9 
 

1 
 

8 
 

F8.2  
82 AW_TRIP 

 
9 

 
9 

 
16 

 
F8.2  

83 AW_WKREL 
 

9 
 

17 
 

24 
 

F8.2  
84 AW_SHOP 

 
9 

 
25 

 
32 

 
F8.2  

85 AW_PNBSN 
 

9 
 

33 
 

40 
 

F8.2  
86 AW_RECR 

 
9 

 
41 

 
48 

 
F8.2  

87 AW_SRVPS 
 

9 
 

49 
 

56 
 

F8.2  
88 AW_CHILD 

 
9 

 
57 

 
64 

 
F8.2  

89 AW_EAT 
 

9 
 

65 
 

72 
 

F8.2  
90 CCAR_USE 

 
9 

 
73 

 
80 

 
F8.2  

91 WALKTM1 
 

10 
 

1 
 

8 
 

F8.2  
92 WALKTM2 

 
10 

 
9 

 
16 

 
F8.2  

93 TAXQ37 
 

10 
 

17 
 

24 
 

F8.2  
94 TXQ38 

 
10 

 
25 

 
32 

 
F8.2  

95 TXQ39_60 
 

10 
 

33 
 

40 
 

F8.2  
96 BEN_PARK 

 
10 

 
41 

 
48 

 
F8.2  

97 PAY_TIME 
 

10 
 

49 
 

56 
 

F8.2  
98 RUR_CITY 

 
10 

 
57 

 
64 

 
F8.2  

99 PRKRES37 
 

10 
 

65 
 

72 
 

F8.2  
100 PRKRES38 

 
10 

 
73 

 
80 

 
F8.2  

101 TCMRES1 
 

11 
 

1 
 

8 
 

F8.2  
102 TCMRES2 

 
11 

 
9 

 
16 

 
F8.2  

103 TCMRES3 
 

11 
 

17 
 

24 
 

F8.2  
104 TCMRES4 

 
11 

 
25 

 
32 

 
F8.2  

105 TCMRES5 
 

11 
 

33 
 

40 
 

F8.2  
106 TCMRES6 

 
11 

 
41 

 
48 

 
F8.2 



 
 
 DERIVED VARIABLES 
 
 BENEFIT  = EMPLOYER BENEFIT MEASURED IN DOLLARS PER MONTH. 
 PARKFEE  = ADDITIONAL PARKING CHARGE IN DOLLARS PER MONTH. 
 CONG_PRC = CONGESTION PRICING MEASURED IN CENTS PER MILE. 
 TT_SAVE  = TRAVEL TIME SAVINGS MEASURED IN PERCENT, i.e., 10%, 20%, 30%. 
 COM_DIST = HOME-TO-WORK COMMUTE DISTANCE 
 
DERIVATION: 
IF (BEN_PARK EQ 1) THEN (BENEFIT = 40. PARKFEE = 40.). 
IF (BEN_PARK EQ 2) THEN (BENEFIT = 40. PARKFEE = 50.). 
IF (BEN_PARK EQ 3) THEN (BENEFIT = 40. PARKFEE = 60.). 
IF (BEN_PARK EQ 4) THEN (BENEFIT = 40. PARKFEE = 70.). 
IF (BEN_PARK EQ 5) THEN (BENEFIT = 40. PARKFEE = 80.). 
IF (BEN_PARK EQ 6) THEN (BENEFIT = 50. PARKFEE = 50.). 
IF (BEN_PARK EQ 7) THEN (BENEFIT = 50. PARKFEE = 60.). 
IF (BEN_PARK EQ 8) THEN (BENEFIT = 50. PARKFEE = 70.). 
IF (BEN_PARK EQ 9) THEN (BENEFIT = 50. PARKFEE = 80.). 
IF (BEN_PARK EQ 10) THEN (BENEFIT = 60. PARKFEE = 60.). 
IF (BEN_PARK EQ 11) THEN (BENEFIT = 60. PARKFEE = 70.). 
IF (BEN_PARK EQ 12) THEN (BENEFIT = 60. PARKFEE = 80.). 
IF (BEN_PARK EQ 13) THEN (BENEFIT = 70. PARKFEE = 70.). 
IF (BEN_PARK EQ 14) THEN (BENEFIT = 70. PARKFEE = 80.). 
IF (BEN_PARK EQ 15) THEN (BENEFIT = 80. PARKFEE = 80.). 
 
IF (PAY_TIME EQ 1) THEN (CONG_PRC = 15. TT_SAVE = 10.). 
IF (PAY_TIME EQ 2) THEN (CONG_PRC = 20. TT_SAVE = 10.). 
IF (PAY_TIME EQ 3) THEN (CONG_PRC = 25. TT_SAVE = 10.). 
IF (PAY_TIME EQ 4) THEN (CONG_PRC = 30. TT_SAVE = 10.). 
IF (PAY_TIME EQ 5) THEN (CONG_PRC = 35. TT_SAVE = 10.). 
IF (PAY_TIME EQ 6) THEN (CONG_PRC = 25. TT_SAVE = 20.). 
IF (PAY_TIME EQ 7) THEN (CONG_PRC = 30. TT_SAVE = 20.). 
IF (PAY_TIME EQ 8) THEN (CONG_PRC = 35. TT_SAVE = 20.). 
IF (PAY_TIME EQ 9) THEN (CONG_PRC = 40. TT_SAVE = 20.). 
IF (PAY_TIME EQ 10) THEN (CONG_PRC = 45. TT_SAVE = 20.). 
IF (PAY_TIME EQ 11) THEN (CONG_PRC = 30. TT_SAVE = 30.). 
IF (PAY_TIME EQ 12) THEN (CONG_PRC = 35. TT_SAVE = 30.). 
IF (PAY_TIME EQ 13) THEN (CONG_PRC = 40. TT_SAVE = 30.). 
IF (PAY_TIME EQ 14) THEN (CONG_PRC = 45. TT_SAVE = 30.). 
IF (PAY_TIME EQ 15) THEN (CONG_PRC = 50. TT_SAVE = 30.). 
 



  ASSUMPTION: ONE MILE = 8 BLOCKS. 
COM_DIST=HMWKDIST. 
IF (HMWKUNIT EQ 2) THEN COM_DIST=HMWKDIST/8. 

 
 
 UNIVARIATE FREQUENCY DISTRIBUTIONS FOR AMOSVER1.DAT  

Variable No. 
Name 

 
Category Name 

 
Category 
Frequency 

 
Total 

Frequency 

 
No. of Values Missing or 

Outside the Range  
 ZERO 

 
0  

ONE 
 

312  
TWO 

 
281  

THREE 
 

44 

 
2 COMMUTER 

 
GT_THREE 

 
19 

 
656 

 
0 

 
DET_HOME 

 
390  

ATT_HOME 
 

93  
APT_COND 

 
168  

MOBILEHM 
 

2  
HOTEL 

 
0  

GRPQRTS 
 

1 

 
3 RES_TYPE 

 
OTHER 

 
2 

 
656 

 
0 

 
MISSING 

 
1  

LT1YR 
 

82  
1-5YR 

 
255  

5-10YR 
 

172 

 
4 TENURE 

 
GT10YR 

 
146 

 
656 

 
0 

 
MISSING 

 
2  

OWN 
 

506  
RENT 

 
147 

 
5 OWNRENT 

 
REFUSE 

 
1 

 
65 6 

 
0 

 
ONE 

 
123  

TWO 
 

210  
THREE 

 
144  

FOUR 
 

117 

 
6 HHLDSIZE 

 
GTFOUR 

 
62 

 
656 

 
0 

 
7 GT5YRS 

 
ONE 

 
131 

 
656 

 
0 



 
TWO 

 
273  

THREE 
 

126  
FOUR 

 
94 

 

 
GT_FOUR 

 
32 

  

 
ZERO 

 
20  

ONE 
 

167  
TWO 

 
321  

THREE 
 

110  
FOUR 

 
30 

 
8 NVEHICLE 

 
GT_FOUR 

 
8 

 
656 

 
0 

 
ZERO 

 
253  

ONE 
 

129  
TWO 

 
149  

THREE 
 

55  
FOUR 

 
43 

 
9 NBICYCLE 

 
GT_FOUR 

 
27 

 
656 

 
0 

 
MISSING 

 
79  

MILES 
 

218  
BLOCKS 

 
359 

 
13 BUSUNIT 

 
REFUSE 

 
0 

 
656 

 
0 

 
MISSING 

 
31  

MILES 
 

553  
BLOCKS 

 
72 

 
15 METRUNIT 

 
REFUSE 

 
0 

 
656 

 
0 

 
YES 

 
517  

NO 
 

139 

 
18 SIDEWALK 

 
REFUSE 

 
0 

 
656 

 
0 

 
YES 

 
307  

NO 
 

337 

 
19 BIKEPATH 

 
REFUSE 

 
12 

 
656 

 
0 

 
MISSING 

 
7  

LT30K 
 

84  
30-50K 

 
157 

 
20 INCOME 

 
50-75K 

 
166 

 
656 

 
0 



 
75-100K 

 
112  

GT100K 
 

85 

 

 
REFUSE 

 
45 

  

 
MISSING 

 
65  

FREE 
 

485  
LT10$ 

 
14  

10-20$ 
 

8  
20-40$ 

 
19  

40-75$ 
 

32 

 
21 PRKCHRG 

 
GT75$ 

 
33 

 
656 

 
0 

 
MISSING 

 
171  

FREE 
 

438  
EMP_PAID 

 
47 

 
22 FREEPAID 

 
REFUSE 

 
0 

 
656 

 
0 

 
MISSING 

 
566  

WALKONLY 
 

53  
SOV 

 
25  

DRIVOTHR 
 

4  
RIDEOTHR 

 
3  

BICYCLE 
 

1  
OTHER 

 
4 

 
23 T_ACCESS 

 
REFUSE 

 
0 

 
656 

 
0 

 
MISSING 

 
566  

WALKONLY 
 

77  
SOV 

 
1  

DRIVOTHR 
 

0  
RIDEOTHR 

 
1  

BICYCLE 
 

0  
OTHER 

 
11 

 
24 T_EGRESS 

 
REFUSE 

 
0 

 
656 

 
0 

 
5-10Y 

 
0  

11-15Y 
 

0  
16-18Y 

 
0 

 
25 AGECATEG 

 
19-29Y 

 
95 

 
656 

 
0 



 
30-39Y 

 
216  

40-49Y 
 

182  
50-59Y 

 
125  

GT_60Y 
 

36 

 

 
REFUSE 

 
2 

  

 
MALE 

 
382  

FEMALE 
 

274 

 
26 GENDER 

 
REFUSE 

 
0 

 
656 

 
0 

 
LIC 

 
640  

NO_LIC 
 

16 

 
27 LICENSE 

 
REFUSE 

 
0 

 
656 

 
0 

 
EMP_FT 

 
603  

EMP_PT 
 

35  
STUDENT 

 
1  

STU_PTWK 
 

3  
STU_FTWK 

 
5  

SEEKWORK 
 

3  
RETIRED 

 
2  

HOMEMAKE 
 

1  
DISABLED 

 
0  

VOLUNTEE 
 

2  
OTHER 

 
1 

 
28 EMPLOY 

 
REFUSE 

 
0 

 
656 

 
0 

 
MISSING 

 
11  

AT_HOME 
 

11  
OUT_HOME 

 
634 

 
29 WRKPLACE 

 
REFUSE 

 
0 

 
656 

 
0 

 
MISSING 

 
11  

YES 
 

52  
NO 

 
593 

 
30 JOB2 

 
REFUSE 

 
0 

 
656 

 
0 

 
MISSING 

 
603  

AT_HOME 
 

15 

 
31 JOB2PLC 

 
OUT_HOME 

 
38 

 
656 

 
0 



 
 
REFUSE 

 
0   

 
MISSING 

 
13  

MILES 
 

628  
BLOCKS 

 
15 

 
33 HMWKUNIT 

 
REFUSE 

 
0 

 
656 

 
0 

 
MISSING 

 
13  

MILES 
 

627  
BLOCKS 

 
16 

 
35 WKHMUNIT 

 
REFUSE 

 
0 

 
656 

 
0 

 
MISSING 

 
15  

LT10MIN 
 

75  
10-30MIN 

 
308  

30-60MIN 
 

220 

 
36 HMWKTIME 

 
GT60MIN 

 
38 

 
656 

 
0 

 
0DAY 

 
152  

1DAY 
 

31  
2DAY 

 
25  

3DAY 
 

56 

 
37 NDAYSOV 

 
GT3DAY 

 
392 

 
656 

 
0 

 
0DAY 

 
538  

1DAY 
 

28  
2DAY 

 
11  

3DAY 
 

12 

 
38 NDAYDRIV 

 
GT3DAY 

 
67 

 
656 

 
0 

 
MISSING 

 
539  

YES 
 

55  
NO 

 
57  

SOME 
 

5  
DONTKNOW 

 
0 

 
39 DRIVHHLD 

 
REFUSE 

 
0 

 
656 

 
0 

 
0DAY 

 
604  

1DAY 
 

16  
2DAY 

 
9 

 
40 NDAYRIDE 

 
3DAY 

 
8 

 
656 

 
0 



 
 
GT3DAY 

 
19   

 
MISSING 

 
604  

YES 
 

14  
NO 

 
36  

SOME 
 

2  
DONTKNOW 

 
0 

 
41 RIDEHHLD 

 
REFUSE 

 
0 

 
656 

 
0 

 
0DAY 

 
623  

1DAY 
 

8  
2DAY 

 
1  

3DAY 
 

7 

 
42 NDAYBUS 

 
GT3DAY 

 
17 

 
656 

 
0 

 
0DAY 

 
586  

1DAY 
 

15  
2DAY 

 
9  

3DAY 
 

7 

 
43 NDAYMETR 

 
GT3DAY 

 
39 

 
656 

 
0 

 
0DAY 

 
646  

1DAY 
 

0  
2DAY 

 
1  

3DAY 
 

2 

 
44 NDAYTRN 

 
GT3DAY 

 
7 

 
656 

 
0 

 
0DAY 

 
655  

1DAY 
 

1  
2DAY 

 
0  

3DAY 
 

0 

 
45 NDAYMOP 

 
GT3DAY 

 
0 

 
656 

 
0 

 
0DAY 

 
646  

1DAY 
 

4  
2DAY 

 
2  

3DAY 
 

1 

 
46 NDAYBIKE 

 
GT3DAY 

 
3 

 
656 

 
0 

 
0DAY 

 
638 

 
47 NDAYWALK  

1DAY 
 

5 

 
656 

 
0 



 
2DAY 

 
0  

3DAY 
 

0 

 

 
GT3DAY 

 
13 

  

 
0DAY 

 
647  

1DAY 
 

4  
2DAY 

 
1  

3DAY 
 

0 

 
48 NDAYHOME 

 
GT3DAY 

 
4 

 
656 

 
0 

 
YES 

 
608  

NO 
 

48 

 
49 AVLSOV 

 
REFUSE 

 
0 

 
656 

 
0 

 
MISSING 

 
4  

YES 
 

375  
NO 

 
277 

 
50 AVLDRIV 

 
REFUSE 

 
0 

 
656 

 
0 

 
MISSING 

 
5  

YES 
 

316  
NO 

 
335 

 
51 AVLRIDE 

 
REFUSE 

 
0 

 
656 

 
0 

 
MISSING 

 
7  

YES 
 

206  
NO 

 
443 

 
52 AVLBUS 

 
REFUSE 

 
0 

 
656 

 
0 

 
YES 

 
195  

NO 
 

461 

 
53 AVLMETR 

 
REFUSE 

 
0 

 
656 

 
0 

 
MISSING 

 
2  

YES 
 

68  
NO 

 
586 

 
54 AVLTRN 

 
REFUSE 

 
0 

 
656 

 
0 

 
YES 

 
112  

NO 
 

544 

 
55 AVLMOP 

 
REFUSE 

 
0 

 
656 

 
0 

 
56 AVLBIKE 

 
YES 

 
104 

 
656 

 
0 



 
NO 

 
552  

 
REFUSE 

 
0 

  

 
YES 

 
602  

NO 
 

54 

 
57 AVLWALK 

 
REFUSE 

 
0 

 
656 

 
0 

 
LT5AM 

 
49  

5-7AM 
 

77  
7-9AM 

 
405  

9-12NOON 
 

96  
12N-6PM 

 
17 

 
58 WK_AR_HR 

 
GT6PM 

 
12 

 
656 

 
0 

 
VARIABLE 

 
0  

MISSING 
 

9  
FIXED 

 
340  

LE_30MIN 
 

86  
30-60MIN 

 
63 

 
60 EARLY_AR 

 
FLEXIBLE 

 
158 

 
656 

 
0 

 
VARIABLE 

 
0  

MISSING 
 

11  
FIXED 

 
336  

LE_30MIN 
 

96  
30-60MIN 

 
78 

 
61 LATE_AR 

 
FLEXIBLE 

 
135 

 
656 

 
0 

 
LT5AM 

 
41  

5-7AM 
 

13  
7-9AM 

 
2  

9AM-4PM 
 

85  
4PM-6PM 

 
361 

 
62 WK_LV_HR 

 
GT6PM 

 
154 

 
656 

 
0 

 
VARIABLE 

 
0  

MISSING 
 

18  
FIXED 

 
313  

LE_30MIN 
 

87 

 
64 EARLY_LV 

 
30-60MIN 

 
77 

 
656 

 
0 



 
 
FLEXIBLE 

 
161   

 
VARIABLE 

 
0  

MISSING 
 

12  
FIXED 

 
274  

LE_30MIN 
 

58  
30-60MIN 

 
73 

 
65 LATE_LV 

 
FLEXIBLE 

 
239 

 
656 

 
0 

 
0DAY 

 
574 

 
66 HW_CHILD  

1+DAYS 
 

82 

 
656 

 
0 

 
0DAY 

 
474 

 
67 HW_NOTCH  

1+DAYS 
 

182 

 
656 

 
0 

 
0DAY 

 
637 

 
68 HW_WKREL  

1+DAYS 
 

19 

 
656 

 
0 

 
0DAY 

 
640 

 
71 HW_SRVPS  

1+DAYS 
 

16 

 
656 

 
0 

 
0DAY 

 
562 

 
74 WH_CHILD  

1+DAYS 
 

94 

 
656 

 
0 

 
0DAY 

 
336 

 
75 WH_NOTCH  

1+DAYS 
 

320 

 
656 

 
0 

 
0DAY 

 
630 

 
76 WH_WKREL  

1+DAYS 
 

26 

 
656 

 
0 

 
0DAY 

 
640 

 
79 WH_SRVPS  

1+DAYS 
 

16 

 
656 

 
0 

 
0DAY 

 
396 

 
82 AW_TRIP  

1+DAYS 
 

260 

 
656 

 
0 

 
0DAY 

 
655 

 
88 AW_CHILD  

1+DAYS 
 

1 

 
656 

 
0 

 
0DAY 

 
586 

 
89 AW_EAT  

1+DAYS 
 

70 

 
656 

 
0 

 
NO_CCAR 

 
611  

WRK_ONLY 
 

24  
GO_HM_WK 

 
20  

OTHER 
 

1 

 
90 CCAR_USE 

 
REFUSE 

 
0 

 
656 

 
0 



 
10MIN 

 
229  

15MIN 
 

212 

 
91 WALKTM1 

 
20MIN 

 
215 

 
656 

 
0 

 
10MIN 

 
206  

15MIN 
 

228 

 
92 WALKTM2 

 
20MIN 

 
222 

 
656 

 
0 

 
1$ 

 
106  

2$ 
 

64  
3$ 

 
120  

4$ 
 

111  
5$ 

 
112  

6$ 
 

46  
7$ 

 
48 

 
93 TAXQ37 

 
8$ 

 
49 

 
656 

 
0 

 
1$ 

 
70  

2$ 
 

80  
3$ 

 
118  

4$ 
 

121  
5$ 

 
110  

6$ 
 

55  
7$ 

 
49 

 
94 TXQ38 

 
8$ 

 
53 

 
656 

 
0 

 
1$ 

 
81  

2$ 
 

74  
3$ 

 
129  

4$ 
 

122  
5$ 

 
116  

6$ 
 

47  
7$ 

 
45 

 
95 TXQ39_60 

 
8$ 

 
42 

 
656 

 
0 

 
0 

 
43  

0 
 

51  
0 

 
46 

 
96 BEN_PARK 

 
0 

 
43 

 
656 

 
0 



 
0 

 
41  

0 
 

42  
0 

 
42  

0 
 

41  
0 

 
49  

0 
 

35  
0 

 
48  

0 
 

33  
0 

 
49  

0 
 

50 

 

 
0 

 
43 

  

 
0 

 
36  

0 
 

45  
0 

 
44  

0 
 

47  
0 

 
46  

0 
 

45  
0 

 
48  

0 
 

40  
0 

 
43  

0 
 

49  
0 

 
41  

0 
 

38  
0 

 
41  

0 
 

42 

 
97 PAY_TIME 

 
0 

 
51 

 
656 

 
0 

 
MISSING 

 
2  

PAY 
 

291  
NO_PAY 

 
363 

 
99 PRKRES37 

 
REFUSE 

 
0 

 
656 

 
0 

 
MISSING 

 
2  

PAY 
 

290  
NO_PAY 

 
364 

 
100 PRKRES38 

 
REFUSE 

 
0 

 
656 

 
0 



 
CH_DEPTM 

 
4  

WALK 
 

13  
BIKE 

 
7  

CARPOOL 
 

66  
TRANSIT 

 
72  

AT_HOME 
 

11  
NOCHANGE 

 
457 

 
101 TCMRES1 

 
OTHER 

 
26 

 
656 

 
0 

 
CH_DEPTM 

 
2  

WALK 
 

4  
BIKE 

 
70  

CARPOOL 
 

20  
TRANSIT 

 
18  

AT_HOME 
 

2  
NOCHANGE 

 
535 

 
102 TCMRES2 

 
OTHER 

 
5 

 
656 

 
0 

 
CH_DEPTM 

 
2  

WALK 
 

8  
BIKE 

 
76  

CARPOOL 
 

35  
TRANSIT 

 
31  

AT_HOME 
 

3  
NOCHANGE 

 
495 

 
103 TCMRES3 

 
OTHER 

 
6 

 
656 

 
0 

 
CH_DEPTM 

 
3  

WALK 
 

9  
BIKE 

 
38  

CARPOOL 
 

57  
TRANSIT 

 
68  

AT_HOME 
 

4  
NOCHANGE 

 
466 

 
104 TCMRES4 

 
OTHER 

 
11 

 
656 

 
0 

 
CH_DEPTM 

 
130 

 
105 TCMRES5  

WALK 
 

5 

 
656 

 
0 



 
BIKE 

 
26  

CARPOOL 
 

29  
TRANSIT 

 
50  

AT_HOME 
 

7  
NOCHANGE 

 
397 

 

 
OTHER 

 
12 

  

 
CH_DEPTM 

 
81  

WALK 
 

7  
BIKE 

 
34  

CARPOOL 
 

42  
TRANSIT 

 
65  

AT_HOME 
 

5  
NOCHANGE 

 
405 

 
106 TCMRES6 

 
OTHER 

 
17 

 
656 

 
0 

 
40$ 

 
224  

50$ 
 

174  
60$ 

 
116  

70$ 
 

99 

 
107 BENEFIT 

 
80$ 

 
43 

 
656 

 
0 

 
40$ 

 
43  

50$ 
 

93  
60$ 

 
123  

70$ 
 

181 

 
108 PARKFEE 

 
80$ 

 
216 

 
656 

 
0 

 
15CENTS 

 
36  

20CENTS 
 

45  
25CENTS 

 
89  

30CENTS 
 

136  
35CENTS 

 
124  

40CENTS 
 

84  
45CENTS 

 
91 

 
109 CONG_PRC 

 
50CENTS 

 
51 

 
656 

 
0 

 
10% 

 
218 

 
110 TT_SAVE  

20% 
 

225 

 
656 

 
0 



 
 
30% 

 
213   

 
LT5MILE 

 
160  

5-15MI 
 

266  
15-25MI 

 
125  

25-50MI 
 

97 

 
111 COM_DIST 

 
GT50MILE 

 
8 

 
656 

 
0 

 
 
PART 2: ACTIVITY AND TRIP RECORDS FOR TRAVEL DIARY DAY 
FILENAME: TIMEUSE1.DAT 
Number of Cases = 9674 (656 RESPONDENTS) 
 
This data file contains the individual activity and trip records for each of 656 commuters who responded 
to the survey. The file was created by combining the following raw data files provided to RDC, Inc. by 
Strategic Consulting Research, Inc., the contracting firm that administered the survey and assembled the 
data bases: 
 
ACTF1 
ACTF2 
 
The file format with variable definitions and codes is provided first, followed by general notes and 
descriptions of derived variables (not saved in the original data bases) if any. 
 
 VARIABLE DESCRIPTIONS  

Variable No. 
Name 

 
Variable Definition 

 
Question in AMOS 

CATI Instument  
1 HHID 

 
Household/Commuter ID Code 

 
  

2 ACTRPNUM 
 
A sequential counter of trips and activities 

 
  

3 ACTRPFLG 
 
A binary flag indicating whether a trip record or an 
activity record. 

 
 

 
4 ALOCTDES 

 
Activity Location if Activity Record OR Trip 
Destination if Trip Record 

 
CATI-2: Q3/Q4/Q9 

 
5 BEGINHR 

 
Activity or Trip beginning time (hour) (provided in 
military time format) 

 
CATI-2: Q1/Q32 

 
6 BEGINMN 

 
Activity or Trip beginning time (min) 

 
CATI-2: Q1/Q32  

7 PURPOSE 
 
Activity Type if Activity Record OR Trip Purpose if 
Trip Record 

 
CATI-2: Q5/Q25-31 

 
8 ENDHR 

 
Activity or Trip ending time (hour) (provided in 
military time format) 

 
CATI-2: Q6/Q11/Q34 

   



9 ENDMN Activity or Trip ending time (min) CATI-2: Q6/Q11/Q34  
10 NEXTLOCN 

 
Is next activity at the same location? (not applicable 
to trip records) 

 
CATI-2: Q8/Q36 

 
 

THE NEXT SET OF VARIABLES ARE RELEVANT ONLY  
FOR TRIP RECORDS, i.e., WHEN  

ACTRPFLG=2.  
11 MODE 

 
Mode used for trip 

 
CATI-2: Q13  

12 DRVRPSGR 
 
If private vehicle, is respondent driver or passenger 

 
CATI-2: Q14  

13 VEHOCC 
 
Vehicle occupancy, including respondent 

 
CATI-2: Q15  

14 HHMEMBER 
 
If VEHOCC>1, how many occupants are 
household members? 

 
CATI-2: Q16 

 
15 PRKGCHRG 

 
Parking Charge/Fee 

 
CATI-2: Q17/Q19  

16 PRKGUNIT 
 
Unit of time for parking charge/fee 

 
CATI-2: Q20  

17 PRKGPAID 
 
Who paid the parking charge/fee? 

 
CATI-2: Q18  

18 TRPFARE 
 
Taxi or trip fare 

 
CATI-2: Q21/Q22  

19 FAREPAID 
 
How was trip fare paid 

 
CATI-2: Q23  

20 EMPLDISC 
 
Was fare discounted or partly employer 
subsidized? 

 
CATI-2: Q24 

 
 

VARIABLE CODES  
VARIABLE NO. 

NAME 
 

CODING SCHEME  
1=Activity 

 
3 ACTRPFLG  

2=Trip  
1=Home  
2=Other private residence  
3=Work site  
4=Work related business site  
5=School (respondent’s)  
6=School or day care to serve child  
7=Serve child for other purpose  
8=Serve passenger other than child 

 
4 ALOCTDES 

 
9=Place of business (gas station, restaurant, etc.) 



 
10=Recreational/Entertainment  
11=Don’t Know  
12=Refused  
13=Other 

 

 
14=Change mode of travel  
1  WRK_WREL = WORK/WORK RELATED  
2  EAT_MEAL = MEAL PREP, EATING  
3  SOCLRECN = SOCIAL/RECREATION  
4  TV_VIEW  = TV VIEWING IN HOME  
5  HM_ENTRT = OTHER ENTERTAINMENT  
6  HM_SHOP  = IN-HOME SHOPPING   
7  HEXERCIS = IN-HOME EXERCISE   
8  HSTUDY= IN-HOME STUDY  
9  HPHONE= TELEPHONE (PERSONAL)    
10 HPRSNCRE = PERSONAL CARE  
11 HM_MAINT = HOME MAINTENANCE   
12 REST_NAP = REST OR SLEEP  
13 SLEEP = SLEPT FOR NIGHT  
14 HM_OTHR  = IN-HOME OTHER ACTIVITY  
15 HCHLDCRE = IN-HOME CHILD CARE  
16 GROCSHOP = GROCERY SHOPPING  
17 MALLSHOP = DURABLE/MALL SHOPPING  
18 FUEL= GASOLINE/DIESEL  
19 MEDICAL  = MEDICAL/DENTAL/HEALTH  
20 PRSNBSNS = PERSONAL BUSINESS  
21 MOVIES= MOVIES, THEATER  
22 PROSPORT = SPECTATOR PRO SPORTS  
23 LOCLSPRT = SPECTATOR LOCAL SPORTS  
24 PARTSPRT = PARTICIPANT SPORT/GAME  
25 AMUSEPRK = AMUSEMENT PARK  
26 CULTURAL = CULTURAL ACTIVITY  
27 CHLDSCHL = SERVE CHILD TO SCHOOL  
28 CHLDOTHR = SERVE CHILD FOR OTHER 

 
7 PURPOSE 

 
29 OTHRPSGR = SERVE OTHER PASSENGER 



 
30 CHNGMODE = CHANGE MODE  
88 HM_XMIS  = IN-HOME UNKNOWN ACTIVITY (MISSING) 

 

 
99 OTHER = OUT-OF-HOME OTHER  
1=Same location 

 
10 NEXTLOCN  

2=Different location  
1=Automobile  
2=Heavy Truck  
3=Taxi/Limousine  
4=Local Bus  
5=Intercity Bus (e.g., Greyhound)  
6=Charter/Commuter Bus  
7=Shuttle Bus  
8=School Bus  
9=Paratransit and dial-a-ride service  
10=Train: AMTRAK/MARC    
11=Train: Subway/Metro  
12=Light Rail/Tram/Streetcar  
13=Motorcycle  
14=Moped/Motorized Bike  
15=Bicycle  
16=Motorized Wheelchair  
17=Airplane  
18=Ferry  
19=Walking/Skating  
20=Don’t know  
21=Refused 

 
11 MODE 

 
22=Other  
1=Driver 

 
12 DRVRPSGR   

2=Passenger  
1=Hour  
2=Day  
3=Week  
4=Month 

 
16 PRKGUNIT 

 
5=Semester/Quarter 



 
6=Year  
 
7=Other  
1=Driver  
2=One or more passengers  
3=Driver and one or more passengers  
4=Employer  
5=Store/Restaurant/Other  
6=Don’t Know 

 
17 PRKGPAID 

 
7=Refused  
1=Cash only  
2=Pass  
3=Transfer only  
4=Cash and Transfer  
5=Ticket/Token  
6=Metro farecard  
7=Metro check  
8=Driver, no fare  
9=Don’t know  
10=Refused  
11=Other means of payment 

 
19 FAREPAID 

 
12=Free, there was no fare  
1=Discounted  
2=Partial employer payment  
3=No discount or partial payment  
4=Don’t know 

 
20 EMPLDISC 

 
5=Refused  

NOTE 
 
Negative values for any data field are defined as follows, unless otherwise specified above: 
-1 = REFUSED 
-2 = DON’T KNOW 
-3 = SKIPPED (NOT APPLICABLE) 
-4 = NOT APPLICABLE 

 
 
 DATA FILE FORMAT INPUT VARIABLES 



 
Column  

Variable No. Name 
 

Record No. 
 

Beg. 
 

End 
 

Input Format 
 
1 HHID 

 
1 

 
1 

 
6 

 
F6.0  

2 ACTRPNUM 
 

1 
 

7 
 

12 
 

F6.0  
3 ACTRPFLG 

 
1 

 
13 

 
18 

 
F6.0  

4 ALOCTDES 
 

1 
 

19 
 

24 
 

F6.0  
5 BEGINHR 

 
1 

 
25 

 
30 

 
F6.0  

6 BEGINMN 
 

1 
 

31 
 

36 
 

F6.0  
7 PURPOSE 

 
1 

 
37 

 
42 

 
F6.0  

8 ENDHR 
 

1 
 

43 
 

48 
 

F6.0  
9 ENDMN 

 
1 

 
49 

 
54 

 
F6.0  

10 NEXTLOCN 
 

1 
 

55 
 

60 
 

F6.0  
11 MODE 

 
1 

 
61 

 
66 

 
F6.0  

12 DRVRPSGR 
 

1 
 

67 
 

72 
 

F6.0  
13 VEHOCC 

 
1 

 
73 

 
78 

 
F6.0  

14 HHMEMBER 
 

2 
 

1 
 

7 
 

F7.2  
15 PRKGCHRG 

 
2 

 
8 

 
14 

 
F7.2  

16 PRKGUNIT 
 

2 
 

15 
 

21 
 

F7.2  
17 PRKGPAID 

 
2 

 
22 

 
28 

 
F7.2  

18 TRPFARE 
 

2 
 

29 
 

35 
 

F7.2  
19 FAREPAID 

 
2 

 
36 

 
42 

 
F7.2  

20 EMPLDISC 
 

2 
 

43 
 

49 
 

F7.2 
 
 
 UNIVARIATE FREQUENCY DISTRIBUTIONS FOR TIMEUSE1.DAT  

Variable No. Name 
 

Category Frequency 
 

Total  
3 ACTRPFLG 

 
9674  

ACTIVITY 
 

6636  
TRIP 

 
3038 

 
0 

 
4 ALOCTDES 

 
9674  

MISSING 
 

7  
HOME 

 
4686  

OTH_RES 
 

177  
WORKSITE 

 
2073 

 
0 



 
WRK_REL 

 
362  

SCHOOL 
 

51  
CHLDSCHL 

 
227  

SRVCHLD 
 

56  
SRVPSGR 

 
155  

PLCBSNS 
 

1384  
RECREATN 

 
133  

DONTKNOW 
 

2  
REFUSED 

 
2  

OTHER 
 

97  
CHNGMODE 

 
262  

UNKNOWN 
 

0 

 

 
5 BEGINHR 

 
9674  

MISSING 
 

789  
<7AM 

 
1305  

7-9AM 
 

1288  
9-12N 

 
755  

12N-1PM 
 

615  
1-5PM 

 
1453  

5-7PM 
 

1291  
>7PM 

 
2178 

 
0 

 
7 PURPOSE 

 
9674  

WRK_WREL 
 

2464  
EAT_MEAL 

 
1957  

SOCLRECN 
 

320  
TV_VIEW 

 
599  

HM_ENTRT 
 

266  
HM_SHOP 

 
13  

HEXERCIS 
 

72  
HSTUDY 

 
51  

HPHONE 
 

50  
HPRSNCRE 

 
1256  

HM_MAINT 
 

87  
REST_NAP 

 
59 

 
0 



 
SLEEP 

 
753  

HM_OTHR 
 

132  
HCHLDCRE 

 
159  

GROCSHOP 
 

206  
MALLSHOP 

 
363  

FUEL 
 

56  
MEDICAL 

 
42  

PRSNBSNS 
 

212  
MOVIES 

 
17  

PROSPORT 
 

6  
LOCLSPRT 

 
2  

PARTSPRT 
 

57  
AMUSEPRK 

 
0  

CULTURAL 
 

10  
CHLDSCHL 

 
0  

CHLDOTHR 
 

2  
OTHRPSGR 

 
4  

CHNGMODE 
 

5  
HM_XMIS 

 
228  

OTHER 
 

226  
UNKNOWN 

 
0 

 

 
10 NEXTLOCN 

 
9674  

NOTAPPL 
 

3856  
SAME 

 
2705  

DIFFERNT 
 

3113  
UNKNOWN 

 
0 

 
0 

 
11 MODE 

 
9674  

MISSING 
 

6387  
AUTO 

 
2646  

HVYTRUCK 
 

12  
TAXILIMO 

 
18  

LOCALBUS 
 

63  
ICITYBUS 

 
0  

CTRBUS 
 

1 

 
0 



 
SHTLBUS 

 
3  

SCHLBUS 
 

4  
PARATRNS 

 
3  

AMTRAK 
 

8  
SUBWYMET 

 
92  

LITERAIL 
 

20  
MOTRBIKE 

 
0  

MOPED 
 

2  
BICYCLE 

 
10  

WHLCHAIR 
 

0  
AIRPLANE 

 
0  

FERRY 
 

0  
WALKSKAT 

 
387  

DONTKNOW 
 

0  
REFUSE 

 
0  

OTHER 
 

18  
UNKNOWN 

 
0 

 

 
12 DRVRPSGR 

 
9674  

MISSING 
 

7016  
DRIVER 

 
2461  

PASSNGR 
 

197  
DONTKNOW 

 
0  

REFUSE0 
 

  
UNKNOWN 

 
0 

 
0 

 
13 VEHOCC 

 
9674  

MISSING 
 

7016  
ONE 

 
1916  

TWO 
 

524  
THREE 

 
135  

FOUR 
 

60  
GTFOUR 

 
23 

 
0 

 
14 HHMEMBER 

 
9674  

MISSING 
 

8917  
ONE 

 
259 

 
0 



 
TWO 

 
376  

GTTWO 
 

122 

 

 
15 PRKGCHRG 

 
9674  

FREE_NA 
 

9550  
NOTFREE 

 
124 

 
0 

 
17 PRKGPAID 

 
9674  

MISSING 
 

9529  
DRIVER 

 
114  

PSGRS 
 

3  
DRVRPSGR 

 
7  

EMPLOYER 
 

19  
PLCBSNS 

 
1  

DONTKNOW 
 

0  
REFUSE 

 
0  

UNKNOWN 
 

1 

 
0 

 
18 TRPFARE 

 
9674  

FREE_NA 
 

9655  
NOTFREE 

 
19 

 
0 

 
19 FAREPAID 

 
9674  

MISSING 
 

9489  
CASH 

 
75  

PASS 
 

29  
XFER 

 
5  

CASHXFER 
 

2  
TICKET6 

 
  

FARECARD 
 

65  
METRCHEK 

 
0  

DRVRFREE 
 

0  
DONTKNOW 

 
0  

REFUSE 
 

0  
OTHER  

 
0  

FREE 
 

3 

 
0 

 
20 EMPLDISC 

 
9674  

MISSING 
 

9493 

 
0 



 
DISCOUNT 

 
4  

EMPLPAY 
 

12  
NODISC 

 
164  

DONTKNOW 
 

0  
REFUSE 

 
1 
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Appendix D:  Evaluation Module and Acceptance Routine 
 
D.1  Approach 
 
Figure D.1 depicts the structure of the Evaluation Module and Acceptance Routines.  An accepted 
activity-travel pattern that passes all of the feasibility checks in the previous component of the AMOS 
model systems constitutes the input to this component.  The evaluation routine first measures the amount 
of time spent on various activities outside the home, the total amount of time spent in-home, and the total 
amount of time spent traveling to various activities.  The utility of each activity episode is computed as a 
function of the activity duration, activity type, density of opportunities for pursuing that activity, and the 
travel time expenditure for that activity episode.  The utility associated with an entire activity-travel 
itinerary is then taken as the sum of the utilities derived from individual activity episodes.   
 
Thus, AMOS uses a time-based utility measure to evaluate the welfare or level of satisfaction derived 
from an activity-travel pattern.  The utilities of all feasible alternative patterns and the baseline travel 
pattern are then compared to assess the probability of finding a pattern with a higher utility by continuing 
the search.  If this probability falls below a certain threshold that is defined by individual attributes and 
activity needs, then the search is terminated and the pattern with the highest time-use utility is accepted.  
The acceptance routine performs this assessment and selection process.  If no pattern is accepted, then 
another TDM response option is generated and the process repeated.  On the other hand, if a pattern is 
accepted, it is sent forward to the next component of the AMOS model system. 
 
 
D.2.  Time Utility Functions 
 
The utility of a daily activity/travel pattern is viewed primarily as a function of the amounts of time 
expended for both out-of-home and in-home activities.  The other two important dimensions are: 
monetary expenditures, and the “quality” of time for each activity, which is determined by the location, 
the co-participants, the amounts of non-monetary resources devoted to the activity, and other 
contributing factors.  An elaborate discussion on the theoretical formulation of activity-based time utility 
functions may be found in RDC, Inc. (1995).  As such, only a brief discussion is provided here. 
 
 



 
The utility of an activity episode, q, is formulated as 
 

Uq = Bk(q)ln(tq) = [bk(q){ln(hrk(q)) + gk(q)ln(Sq)} + eq]ln(tq), tq > 0 
 
where 
  

tq 
 
= 

 
activity duration of episode q  

k(q) 
 
= 

 
activity type of episode q    

 



bk(q), gk(q) = unknown coefficient  
rk(q) 

 
= 

 
density of opportunities for activity k(q)  

h 
 
= 

 
scaling constant  

Sq 
 
= 

 
travel time expenditure for episode q, and  

eq 
 
= 

 
i.i.d. random error term. 

 
The coefficient, Bk(q) (>0), may be viewed as the modifier of the basic time utility, ln(tq).  The modifier 
is assumed to vary by activity type and represents the locational attributes of activity episode q in this 
formulation. 
 
In this formulation, the term, ln(hrk(q)) + gk(q)ln(Sq), reflects the consideration that the utility of an 
opportunity chosen for the activity on average increases with the number of opportunities out of which 
that opportunity has been chosen.  It may be reasonably assumed that an opportunity chosen after 
traveling Sq is better than those opportunities closer than Sq; otherwise that distance will not be traveled 
 
In applying the above, appropriate zonal density measures may be selected for rk(q) considering the 
type of activity.  Determining Sq for linked trips is not straightforward.  One approach is to use a 
measure of the deviation of the opportunity location from the line obtained by connecting the previous 
location and the next location (including the home base), e.g., 
 

max (tiq + tqj - tij, 0), 
 
where i is the previous opportunity, j is the next opportunity, and tij is a measure of spatial separation 
between opportunity i and opportunity j. 
 
Assuming that the total utility of the series of activities pursued during a day is the sum of the utilities of 
the respective activities, we let 
 

U(Tit, Rit) = S Uq = S Bk(q)ln(tq), 
 
where the summation is for all non-travel activities.  This form of the utility function is used to evaluate 
alternative activity/travel patterns in AMOS.  It is noteworthy that the same formulation can be used 
even if the total utility is considered a product of individual utilities.   
 
This basic utility expression warrants two extensions: 
 

• Incorporation of monetary expenditures 
• Incorporation of differential effects of travel modes on the quality of travel time. 

 
Monetary expenditures or the stock of instruments and devices available for activity engagement do 
affect the quality of time spent for the activity.  For example, the same two-hour dinner may yield 
different levels of utility depending on the quality of the restaurant, which will be reflected in the 



monetary expenditure there.  Unfortunately, such information is usually not available in travel behavior 
data sets.  Because of this, it will be assumed that such differences can be represented by incorporating 
measured socio-economic attributes of the individual into the utility function, and by its random error 
term, eq.  This calls for the following modification of Uq: 
 

Uq = [bk(q){ln(hrk(q)) + gk(q)ln(Sq)} + Bk(q)’Xi + eq] ln(tq), tq > 0, 
 
where Bk(q) is the vector of coefficients and Xi is the vector of the attributes of individual i. 
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